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ABSTRACT

This paper presents a generative architecture for general-purpose
room layouts that can be treated as geometric definitions of dun-
geons, mansions, shooter levels and more. The motivation behind
this work is to provide a design tool for virtual environments that
combines aspects of controllability, expressivity and generality. To-
wards that end, a two-tier level representation is realized, with a
graph-based design specification constraining and guiding the gen-
erated geometries, facilitated by constrained evolutionary search.
Expressivity is secured through quality-diversity search which can
provide the designer with a broad variety of level layouts to choose
from. Finally, the generator is general-purpose as it can produce
layouts based on different types of static grid structures or as free-
form, curved structures through an adaptive Voronoi diagram that
is evolved along with the level itself. The method is tested on a
variety of design specifications and grid types, and results show
that even with complex design constraints or malleable grids the
algorithm can produce a broad variety of levels.
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1 INTRODUCTION

This paper addresses the problem of generating room-based en-
vironments that can apply to a broad range of games including
dungeon crawlers, horror games, first-person or top-down shooters
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and many more. We especially focus on addressing how procedural
content generation (PCG) can help level designers to clearly define
their design goals and then efficiently explore the space of possible
designs, thus gaining a deeper understanding of the problem at
hand and being able to make well-informed decisions.

Consequently, our proposed methodology combines aspects of
controllability, expressivity and generality. Controllability refers to
two aspects. First, the designer’s ability to make specific requests
in regard to the generated levels’ typology and have the algorithm
generate solutions that respect them. Second, the designer’s abil-
ity to select the dimensions of diversity that should be explored.
Expressivity refers to the algorithm’s ability to generate diverse
solutions, i.e. ones that are novel from past or concurrent solu-
tions [28]. Finally, generality refers to the flexibility of the content
representation that makes it applicable to many different scenarios.

We incorporate controllability primarily by having the designer
provide an abstract, topological definition of their desired outcome,
the Design Specification (DS). The DS describes the number and size
of rooms and their connections in an intuitive, visual way. Given
a DS, the algorithm will generate a set of Design Implementations,
i.e. concrete, geometric designs that describe the actual boundaries
of rooms and the placement of doors that connect them, while
respecting the constraints posed by the DS. This distinction between
the topological and geometric characteristics of designed spaces
has been proposed and utilized, in various forms, in the fields of
PCG [5, 12, 34] and evolutionary architectural design [3, 24, 29, 41],
both of which have been an inspiration for this approach.

A secondary aspect of controllability is the designer’s ability to
select a set of Behavioral Characterizations (BCs) which define the
search-space and characterize the algorithm’s expressive range. In
this study we examine a specific pair of BCs, however the algo-
rithm’s implementation offers more options that the designer may
choose from. The available set of BCs can also be easily expanded,
thanks to the modular implementation of our framework.

Expressivity is another central aspect of our approach. It refers to
the algorithm’s ability to generate a highly diverse set of solutions,
per run, i.e. to exhibit a large Expressive Range, as defined in [32].
Importantly, this aspect cannot be addressed in isolation, but must
align with both aspects of controllability: (a) designer-imposed
and other constraints and (b) designer-selected BCs. Constraint-
solving in itself can be efficiently addressed through declarative
programming [4, 27, 31], yet such approaches generate a single
solution per run and there is no intuitive way of guaranteeing
diversity among generated solutions across runs. In order to address
expressivity and constraint-solving as one problem, we follow the
broad paradigm of PCG driven by Quality-Diversity (PCG-QD) [7]
and implement a constraint-solving illumination algorithm [26],
inspired by similar work [1, 8, 14, 20]. In combining controllability
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with constrained expressivity, our proposed methodology becomes
a powerful tool that can illuminate the feasible and infeasible parts
of the solution space, thus providing the designer with a broad
understanding of the problem at hand.

Finally, generality is served in two different ways: First, our
algorithm must be able to solve and explore a variety of problems,
as long as their DS is of reasonable topological complexity. Apart
from the topological perspective, however, the generality of our
method also refers to its large geometric flexibility, which is mainly
due to the use of a mutable Voronoi diagram [6] as a substrate
for generated geometries. Furthermore, the underlying Voronoi
diagram can be set to a structured and immutable arrangement,
such as a square or hex grid, thus serving some of the commonly
requested stylistic constraints of a broad range of games.

2 RELATED WORK

Procedural Content Generation in games is a lively research field
[18]. We focus below on approaches that are controllable on a high-
level in a way that constrains the low-level topological properties
that are handled by the generator. These approaches were a major
inspiration for the proposed work.

The distinction between topological and geometric aspects of a
level has been recognized and utilized in PCG in various ways. Dor-
mans [5] makes the separation between missions (directed graphs
that represent gameplay routes) and spaces (geometric layouts that
align with missions). In that work, Dormans proposes a two-stage
generation of levels, first generating missions via graph grammars
and then spaces via shape grammars. Beyond shape grammars, more
recent work has explored how to generate the low-level geometries
through constraint solvers [11] and evolution [17]. Representing
the high-level view of the level as a graph is common practice in
PCG, indicatively optimizing the graphs via artificial evolution [13],
human-in-the-loop interfaces [12] or constraint solvers [34]. In
other work, level segments were split based on a grid layout in case
of equal-sized rooms as e.g. in Legends of Zelda (Nintendo, 1986),
and the high-level progression between segments was learned from
past examples [36] or optimized based on high-level path-based
priorities [17]. Finally, Sonancia implemented a very different way
of controlling the geometric level generation through the intended
progression of tension between rooms from entrance to exit, which
could be designer-provided [21] or evolved [22]. Interestingly, sim-
ilar approaches can be found outside the context of games, in the
field of evolutionary architectural design. In those cases, the topo-
logical aspect does not represent a mission, but rather the connec-
tivity graph of a house’s rooms. In an early example, Charman [3]
proposed a constraint-solving system that generates architectural
layouts while solving room connectivity constraints. Expanding
on Charman’s work, among others, Medjdoub and Yannou [24]
propose the use of a Design Specification which includes a set of Di-
mensional Constraints (surface, dimensions, orientation of rooms)
and a set of Topological Constraints (such as adjacency between
rooms). Their layout generation method first solves the topologi-
cal constraints and then optimizes the solution to best satisfy the
geometric constraints. Our proposed methodology has been largely
inspired by the concepts introduced there. Other relevant and more
recent examples can be found in [23, 25, 29, 39-41]
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3 METHODOLOGY

The paper introduces a hierarchical way of representing levels
(described in Sec. 3.2), and leverages a constrained quality-diversity
(QD) algorithm in order to produce feasible, fit and diverse level
geometries. The constrained QD algorithm described in Sec. 3.1
relies on an initial population of random layouts (as described in
Sec. 3.3) which are then mutated (as described in Sec. 3.4) to improve
the quality and diversity of the population as discussed in Sec. 3.5.

3.1 Algorithm

Our proposed algorithm, Feasible-Infeasible Multidimensional
Archives of Phenotypic Elites (FI-MAP-Elites) is a hybrid of the MAP-
Elites [26] and FI-2Pop GA [15] algorithms. Its main goal is to com-
bine the illumination capabilities of the former with the constraint-
solving capabilities of the latter. It is strongly inspired by the Con-
strained MAP-Elites [14] algorithm but operates in a slightly differ-
ent way which can be beneficial for reasons explained later on. The
following paragraphs briefly describe all relevant algorithms and
conclude with an in-depth description of FI-MAP-Elites.

MAP-Elites is an illumination algorithm which explores all areas
of a behavioral space with a selection pressure towards locally
higher fitness [26]. Its operation is based on a discretization of the
behavioral space into cells of equal size, each of which can store
a single individual whose Behavioral Characterizations (BCs) lie
within that cell. In every step (evaluation), the algorithm randomly
selects an individual from the archive, mutates it and evaluates
the offspring’s fitness and BCs. It then places the offspring back in
the archive at its corresponding coordinates: if that cell is already
occupied the fitter individual of the two survives in that cell. By
repeating this operation, the algorithm’s archive of solutions is
gradually expanded (coverage) and optimized (fitness).

The Feasible-Infeasible two-population genetic algorithm (FI-
2Pop GA) [15] handles constrained optimization problems by retain-
ing two populations. The first one contains only feasible individuals
and its selection pressure is the objective. The second one contains
only infeasible individuals and its selection pressure is a feasibility
score, calculated as the percentage of satisfied constraints. Individ-
uals are selected and evolved from both populations, with offspring
placed on the corresponding population based on their feasibility.
The FI-2Pop GA has been extensively used for level generation
[19, 35] as it is inherently a constrained optimization problem.

FI-MAP-Elites discretizes the behavioral space, similar to MAP-
Elites, but retains two archives of elites (one for feasible and one
for infeasible elites). Cells of each archive store a single individual.
Importantly, the survival criterion for the feasible archive is the
individual’s fitness, while for the infeasible archive it is its feasi-
bility score, similar to FI-2Pop GA. In each iteration, FI-MAP-Elites
performs the following steps (shown in Fig. 1). First, an individual
is selected from a random cell of either the feasible or the infeasi-
ble archive, alternating between the two when both archives are
non-empty. An offspring of the selected individual is produced
via mutation. If the offspring is feasible, it is evaluated (fitness &
BCs) and placed in the feasible archive, otherwise it is evaluated
(feasibility score & BCs) and placed in the infeasible archive.
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Figure 1: A single iteration of the FI-MAP-Elites algorithm.

As mentioned earlier, FI-MAP-Elites is heavily inspired by the
Constrained MAP-Elites [14] algorithm, which allows two popu-
lations of individuals (a feasible and an infeasible one) in every
cell of the archive. In its presented configuration, FI-MAP-Elites is
almost equivalent to a version of Constrained MAP-Elites where
the maximum population size (per population, per cell) was set to
1: 1 feasible and 1 infeasible individual. However, FI-MAP-Elites
offers extended functionality as (a) it allows the use of different BCs
and/or different feature map resolutions between the feasible and
infeasible archives and (b) it can use specialized selection methods
[30] to increase the algorithm’s overall performance. Nevertheless,
these algorithmic options are not examined in this paper, as the
main focus lies on the specific design problem’s particularities.

3.2 State Representation

The levels generated by our approach form different regions that
we identify as “rooms”; however, this could include any partition
with hard boundaries and one way of accessing it, such as elevated
terrain in Starcraft (Blizzard, 1998) or islands with bridges in Heroes
of Might and Magic II (3DO, 1996). Different rooms are separated
by walls, and two adjacent rooms can be connected with a door.
Importantly, the generator produces the level geometry (currently
as a top-down 2D layout) that adheres to a high-level specification
of the level. This dual representation, from the high-level Design
Specification to the geometric Design Implementation is described
below.

3.2.1 Design Specification. A Design Specification (DS) is an ab-
stract description of the layout that is to be generated. It contains
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(a) Design Specification with 5
rooms and 4 doors

(¢)L1&1L2

(d)L1,L2 & L3

Figure 2: A Design Specification and the three layers of in-
formation (L1, L2, L3) of a feasible Design Implementation.

an undirected graph whose vertices represent a set of rooms and
whose edges represent a direct connection between a pair of rooms
through a door. Each vertex (room) is also assigned with an area that
this room should occupy. A DS is a critical part of the design con-
straints and is utilized in various parts of our algorithmic approach,
including the initialization, mutation and evaluation methods. An
example of a Design Specification is shown in Fig. 2a.

3.2.2  Design Implementation. A Design Implementation (DI) is a
geometry that matches the provided DS, produced by the generator.
It includes the specific geometric boundaries of each room, as well
as the exact placement of doors that connect them. A generated
DI can be feasible or infeasible, based on whether it satisfies the
constraints posed by the DS and a few more, described in Sec. 3.5.1.
In our proposed algorithmic approach, a DI consists of three
hierarchically dependent layers of information (shown in Fig. 2):

Layer 1 (L1). L1 describes the Voronoi tessellation of a 2D rectan-
gle, whose cells become the building blocks for the shape of rooms
and levels (as shown in Fig. 2b). Square and Hex grids are simply
special cases of the Voronoi diagram, where points have been pre-
arranged accordingly (see Fig. 4). The L1 genotype consists only of
the points’ coordinates, while the calculated L1 phenotype includes
the generated Voronoi diagram and the resulting adjacency between
active cells. Cells that touch the bounding rectangle are treated as
inactive and omitted from the phenotype, so as to eliminate geo-
metric biases towards orthogonal boundaries. The L1 genotype can
be mutated by changing coordinates of existing points, resulting in
a different Voronoi diagram. Adding or removing points has been
disabled in this study, for the sake of simplicity.
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Layer 2 (L2). L2 describes the rooms’ placement on the 2D plane
and their exact shape (as shown in Fig. 2c). The L2 genotype is
a dictionary that assigns the use of specific rooms of the DS to
specific cells of the Voronoi diagram. The L2 phenotype consists of
the rooms’ boundaries. Those are calculated by merging the regions
of cells that belong to the same room.

Layer 3 (L3). L3 describes the walls and doors, as well as the
resulting connectivity graph of the interior space (as shown in Fig.
2d). The L3 genotype represents the doors’ locations as a pair of
neighboring cells. The exact coordinates of each door are part of the
L3 phenotype and lie in the mid-point of the line-segment shared
between the two cells. The L3 phenotype also includes a computed
connectivity graph that accounts for boundaries (walls) between
rooms and between a room and the exterior, and doors that allow
connections between adjacent rooms.

3.3 Random Initialization

Random initialization is a critical part of the algorithm’s operation,
as it generates the initial population which will be extended and
optimized through mutation operators described in Section 3.4.
Our random initialization process consists of a sequence of semi-
stochastic operations that attempt to generate a feasible DI based
on the DS, as described in the following steps:

Tessellation Definition (L1): First, a set of points that lie within
the specified bounding rectangle is assigned, and the resulting tessel-
lation and connectivity graph is calculated. The points’ coordinates
can be random, (forming a generic Voronoi diagram), or structured
to form a square or hex grid as shown in Fig. 4.

Room Placement (L2): The following steps are repeated until
all rooms have been placed on the map. First, the algorithm selects
a room in the DS that is not yet in the DI, prioritizing rooms with
more connections. Then the room is assigned to a single cell that
is near already placed rooms that it connects to (according to the
DS). If no such cell exists (e.g. for the first room), a free cell will
be selected at random. Starting from this first cell, the room’s area
is expanded using free adjacent cells chosen randomly, until the
room’s area falls within the specified error margin.

Door Placement (L3): Finally, the algorithm finds all potential
locations for door placement per connection in the DS and places a
door at one of them, at random. Proper locations include the lines
of the shared boundary between connected rooms, whose length is
at least 0.5 units. This threshold is adjustable depending on the size
of the door meshes and the player’s avatar.

3.4 Mutation

Mutation occurs in two stages (see Fig. 3): First, the destruction
method randomly alters parts of the level without taking constraints
into account. Then, the repair method attempts to bring the level
back to a feasible state. The repair operations are semi-stochastic
and do not guarantee feasibility, but increase the chances for it.

3.4.1 Destruction: The destruction method selects between 1 and
3 operations from the following list (chosen at random) and applies
them on the selected DI, generating an altered, usually infeasible,
offspring. The destruction operators target specific DI layers, noted
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in parentheses. Note that L1 destruction operations are only applied
on Voronoi grids.

e Points Offset (L1): Moves all points in a single random di-
rection by a distance D = r-W, where r is a random number
within [0,0.25] and W is the bounding rectangle’s width.
Points falling outside the bounding rectangle are symmetri-
cally reinserted. This operation was found to aid constraint
satisfaction, as it frees DIs from the grid’s boundaries.

¢ Points Noise (L1): Randomly selects a small percentage
of points and moves them towards different directions and
distances. Points that fall outside the bounding rectangle are
symmetrically reinserted.

e Room Deletion (L2): Eliminates a single room from the DI,
by clearing all cells that belong to it.

¢ Unsafe Room Expansion (L2): Expands a room’s area
using all of its surrounding cells, whether they be occupied
or not.

¢ Safe Room Expansion (L2): Expands a room’s area, using
all of its unoccupied surrounding cells.

e Room Erosion (L2): Reduces a room’s area by iteratively re-
moving all cells whose removal does not break its coherence
(connectivity between this room’s cells) and connectivity
(adjacency with connected rooms).

e Door Deletion (L3): Removes either 5% or 50% (selected
with equal probability) of placed doors. At least one door
will be removed, in either case.

3.4.2 Repair: The repair method attempts to bring a DI back to a
feasible state by sequentially applying all operations of the follow-
ing list (denoting the DI layer on which they operate).

e Missing Rooms Repair (L2): Places any missing rooms
back in the DI, using a single cell that is adjacent to their
prescribed neighbors, if possible.

e Room Coherence Repair (L2): If any room consists of
more than one (disconnected) sub-regions, this method will
keep one of them at random and remove the rest.

e Room Connectivity Repair (L2): If any room connection
in the DS is not implemented in the DI (i.e. no cells of con-
nected rooms are adjacent to each other), this method will
attempt to find the shortest path between the rooms and
expand them along the path until they become adjacent.

e Room Area Repair (L2): If any room’s area is very different
than that prescribed in the DS, this method will increase
or reduce its area by either expanding to adjacent cells, or
safely removing cells without breaking its coherence and
connectivity, until its area error is below 0.4 (details on the
area error E4 and how it is calculated are in Sec. 3.5.1).

e Doors Repair (L3): This method deletes any misplaced or
redundant doors and then randomly places any missing ones.

3.4.3 Mutation Example: Figure 3 shows an example mutation of
a simplified DI. Starting from a feasible parent (Fig. 3 left), the
destruction method applies two operations: (D1) a small percentage
of points are randomly moved, resulting in an area change for
rooms 1 and 5 and a disconnect for room 2, (D2) room 3 is deleted.
Starting from the destroyed offspring (Fig. 3 middle), the repair
method applies the following operations: (R1) room 3 is placed back
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Figure 3: Destruction and repair stages of mutation.

in the level, occupying a single cell adjacent to room 1, (R2) the
coherence of room 2 is repaired by deleting the isolated cell, (R3)
rooms 2 and 3 are expanded by one cell each, reaching an acceptable
area, (R4) the misplaced door that used to connect rooms 1 and 3 is
deleted and a new door is added, properly connecting rooms 1 and
3. After all these operations have been applied, the result is a new
feasible individual (Fig. 3 right).

3.5 Evaluation

A central part of any evolutionary algorithm is how content is eval-
uated. In the case of constrained Quality-Diversity search, content
evaluation covers a multitude of aspects: the constraints that need
to be satisfied (see Sec. 3.5.1) and the feasibility score used to push
infeasible individuals towards feasibility (see Sec. 3.5.2), the fitness
function for determining quality of feasible individuals (see Sec.
3.5.3), and the Behavioral Characterizations for determining the
dimensions of diversity explored by the algorithm (see Sec. 3.5.4).

3.5.1 Constraints: A DI is feasible if all the following constraints
are satisfied: (1) all cells in the tessellation are connected, (2) at least
50% of cells are active (not on the borders, as shown in Fig. 4), (3)
all prescribed rooms exist in the DI, i.e. at least one cell is assigned
to each of them, (4) all rooms are coherent, i.e. all cells assigned to
each room must be connected, (5) every connection between rooms
specified in the DS must exist as adjacent cells of these rooms in the
DI. (6) every room’s area-error (E4) must be smaller than 0.4. For
room i its E4 (i) is calculated via Eq. (1), where A(i) is the room’s
area in the DI and Ap(i) is the room’s prescribed area in the DS, (7)
doors in the DI precisely satisfy the connectivity described in the
DS, and must be on walls spanning at least 0.5 units, (8) a room’s
internal pathways between walls should be at least 0.5 units wide.

EA) =1~ R AL ) g
3.5.2  Feasibility Score. If any of the constraints of the DI is not sat-
isfied, the DI is infeasible and its feasibility score is calculated. The
feasibility score is a way of calculating the proximity of a DI to being
feasible, and is used to determine elites in the infeasible population.
In FI-2Pop [15], this proximity is calculated as the percentage of
satisfied constraints. Given the complexity of the problem at hand,
however, and based on preliminary tests, we further provide a gra-
dient for each constraint based on partial satisfaction in order to
assist the search for feasible DIs. The following list describes the
conversion of the boolean constraints (Sec. 3.5.1) to fine-grained
scores that capture the degree of satisfaction for each constraint.
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The feasibility score is calculated as the average of all those scores.
Note that if a constraint is satisfied, its score is 1.

(1) Connected Graph Score (L1): we assign s = 1/N; where
N; is the number of islands (sub-graphs) of the tessellation.

(2) Active Cells Score (L1): if active cells are less than 50% of
total cells, then we assign s = r/0.5, where r is the ratio of
active cells over all cells.

(3) Rooms Existence Score (L2): calculated as the ratio of
existing rooms over the total number of rooms in the DS.

(4) Rooms Coherence Score (L2): calculated as the ratio of
coherent rooms over the total number of rooms in the DS.

(5) Connections Existence Score (L2): calculated as the ratio
of satisfied room adjacencies in the DI over the total number
of connections in the DS.

(6) Rooms Area Score (L2): calculated as the average area score
of all rooms. For room i, its area score S4 (i) is 0 if the room
does not exist, 1if E4(i) > 0.4 and (1—E4(i))/0.6 otherwise;
E4 (i) is described in Eq. (1).

(7) Doors Score (L3): calculated as the ratio of current accurate
doors over the number of prescribed doors.

(8) Pathways Score (L3): calculated as the ratio of current
pathways over 0.5 units wide, over the total pathways.

3.5.3  Fitness function: If all constraints of the DI are satisfied, we
calculate its feasible fitness which represents the precision of the
rooms’ areas. It is calculated as the average area precision of all
rooms. For room i its area precision is P4(i) = 1 — E4 (i), where
E (i) is the room’s area error from Eq. (1).

3.5.4 Behavioral characterization: We use two Behavioral Char-
acterizations (BCs) as measures of diversity among the generated
DIs. This results in a two-dimensional feature-map for the feasible
population (and another feature-map for the infeasible), which is
useful for visualizing the archive of maps to a designer. Both BCs
are based on the notion of compactness (C), a unit-less measure that
expresses the relation between a shape’s perimeter and its area [16].
The formula for compactness [16] is shown in Eq. (2), but each BC
uses this formula with different variables.

c=2%4g @)

The BCs are as follows:
Plan Compactness. (Cp) expresses the compactness of a level
as a whole, accounting its external borders (walls). Cp is calculated

via Eq. (2), setting A as the total area of all rooms and IT as the outer
perimeter of the layout, disregarding borders between rooms.

Average Room Compactness. (C,) expresses the average com-
pactness of each room. A room’s compactness is calculated via Eq.
(2), by setting A as the total area of the room in the DI and IT as
the room’s perimeter considering borders between rooms, doors,
and the outer perimeter. Note that if a room (or the entire layout) is
missing from the DI, its compactness is 0; thus we can still calculate
these BCs for infeasible individuals.

4 EXPERIMENT PROTOCOL

In order to evaluate our general-purpose generative algorithm, we
test it in a broad variety of design specifications including sym-
metrical specifications that may be useful for multi-player games
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(a) Square grid (b) Hex grid (c) Voronoi grid

Figure 4: Three indicative spatial tessellations: Square grid,
Hex grid and Voronoi grid. In all three cases, cells that touch
the border are omitted as inactive (gray), while adjacency

between active cells is marked with thin red lines.
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Figure 5: Indicative examples of the examined graph struc-

tures, at order of 4 for Fig. 5a-5d and order of 8 for Fig. 5e-5g.

with two players, such as Starcraft, or two teams, such as Counter-
Strike (Valve, 2000). Moreover, we test three different types of grid
structures in order to show the versatility of the algorithm but also
to assess how the grid structure (and its flexibility) impacts the
algorithm’s performance.

We test three types of spatial tessellation, placing the points
within a boundary rectangle of 16x16 units; cells touching the
border are disregarded as inactive (see Sec. 3.2). The Square grid
is generated by arranging a set of 16x16 (256) points along an
orthogonal grid. The Hex grid tessellation is generated by arranging
256 points along a triangular grid. For both Square and Hex grids,
the tessellation results in 196 active cells (square or hexagon) of
approximately 1 square unit area each. The Voronoi grid is generated
by randomly placing 256 points within a boundary rectangle of
16X16 units. The number of active cells, as well as their exact shape
and size, are in this case dynamic and depend on the arrangement
of points within the boundary. Contrary to the static Square and
Hex grids, the Voronoi grid is mutable (L1 mutation operations)
and its structure is co-evolved with the rest of the level.
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Figure 6: Expressive Range Analysis: Density plots (average
coverage across 10 runs), after 2'° evaluations, grouped by
grid type. The axes in each density plot are Cp, (x) and C; (y).

For each of the three tessellations, we use a set of Design Speci-
fications of varying complexity, based on seven graph typologies
(showcased in Fig. 5) at certain ranges of order. The Cycle, Star,
Wheel and Path graphs are examined in the order-range of 4 to 10,
while the Double Cycle, Double Star and Double Wheel graphs are
examined in the orders of 8 and 10 vertices, resulting to a total of
34 different graphs. Every DS specifies the desired area per room
(Ap) in the same way as Ay = 4 + Dy units, where D, is the degree
of the room’s vertex (i.e. the number of edges connecting to it).

Based on the various DS graph structures, we have 34 experi-
ments per grid type (total of 102 experiments). For each experiment,
we run 10 independent runs of the FI-MAP-Elites algorithm with an
archive-size of 16x16 cells for 2!° (524, 288) evaluations and report
the aggregated results from these 10 runs.

The source code for all experiments, which can be used to repro-
duce or expand on the results, can be found at https://github.com/
konsfik/FI-MAP-Elites .

5 RESULTS

Figure 6 shows the average coverage of the feasible archive (at a
resolution of 16x16 cells) for all 102 experiments across DS and
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Double Star

Table 1: Sample levels for two design specifications of order 8, using Square (top), Hex (middle) and Voronoi (bottom) grids.
Samples were selected among those with the highest and lowest C, values and the highest and lowest C; values, in that order.

grid types. This visualization is also valuable for expressive range
analysis [32] since the PCG-QD protocol used here dynamically
produces these as part of its standard operation. We measure cover-
age as the ratio of occupied cells in the feasible feature map (as we
are only interested in valid level layouts) over the total number of
cells (256 in this paper).

We observe that the Square, Hex and Voronoi grids exhibit an
average coverage of 38%, 37% and 53% respectively. An interpreta-
tion of this large difference between the two static grids and the
mutable one is that the Square and Hex grids have most probably
reached the limits of their solution space which is naturally smaller
than that of the Voronoi grid, due to the geometric constraints
that their fixed grids impose on the generated solutions. A quick
glance at Table ?? can offer an intuitive understanding of those
constraints, as well as the larger flexibility of the mutable Voronoi
grid at representing both circular shapes (high compactness) and
elongated or branching ones (low compactness).

Another indication that for Square and Hex grids the entire space
of possible layouts (in terms of these BCs) has been discovered
is that most independent runs cover the same cells in Fig. 6. In
comparison, for the Voronoi grid the discovered cells vary more
(especially in the borders of the possibility space) from run to run.
Observing the progress of coverage over the number of evaluations,
we generally notice that for both Hex and Square grids coverage
marginally increases after approximately 250, 000 evaluations, while
for the Voronoi grid coverage continues to increase up to the end of
the evolutionary run (524, 288 evaluations). While coverage keeps
increasing for the Voronoi grid, it is worth noting that the initial
discovery of feasible individuals is much more difficult for this
tessellation than for the other two. We observed that on average,
the first feasible individual was discovered after 430, 102 and 4370
evaluations for the Square, Hex and Voronoi grid, respectively.
Specifically, feasible individuals were found during the random
initialization (i.e. the first 100 evaluations) in 75%, 78% and 12%
of runs among experiments for the Square, Hex and Voronoi grid,
respectively. Both findings support that constraint satisfaction is
much easier for the Square and Hex grids than the Voronoi one,

despite the latter’s eventual superiority in terms of coverage of the
feasible space.

We don’t see particular differences between graph types in the DS
at the same order, with the Star connectivity faring slightly worse
in all three grid types. Interestingly, the Double Star usually reaches
higher coverage than the Star at the same order. We anticipate that
the algorithm struggles to make a single central room with 9 or
10 adjacent rooms without elongating it and thus lowering room
compactness. Fig. 6 corroborates this, as at high DS orders (9 and
10) in all graph types both lower and upper boundary for C, (the y
axis) are clipped without a similar sacrifice for Cp, (the x axis).

To showcase the type of levels generated with the different grid
types and BCs, we show some example layouts generated for the
Cycle and the Double Star at order 8 in Table ??. The four levels
shown are selected from the edges of the possibility space (with
highest or lowest BC values) in order to showcase the diversity of
the possible DIs for the same DS. We see that for high C,, all layouts
are compact and have no holes or protruding walls; especially for
the Voronoi grid the layouts are almost circular. The opposite is true
for low Cp, since most rooms are corridors of minimal width and
many holes, dead-ends, and protruding edges. Similar corridor-like
rooms prevail for low C, but the layout has far fewer holes and a
smaller footprint. Finally, for high C, we observe compact rooms
but as a footprint there are more jutting edges and a less circular
layout in the case of Voronoi grids. Levels with high C, values seem
the most intuitive as e.g. dungeon levels (for the Cycle graph) or
arena-style deathmatch FPS levels [2] (for the Double Star graph),
which have two larger, central, arenas at rooms 1 and 6.

6 DISCUSSION

As indicated in Section 5, our proposed methodology can support
all tested specifications, across all types of tessellations, generating
diverse sets of feasible solutions that approach the natural limits
of the solution space. This is a clear indication that our proposed
algorithm exhibits a high degree of expressivity and thus satisfies
one of the main goals of this approach. Furthermore, the relation
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between the problem’s complexity and the algorithm’s behavior, in
terms of computational performance, constraint-satisfaction and
diversification follows an expected pattern, where more complex
specifications tend to be more difficult (and slow) to solve and
diversify. However, as the results showcase, the complexity of the
tested specifications has not approached the practical limits of
addressable problems, suggesting that the algorithm can be applied
to even more complex ones.

This study explored diversity only on simple compactness met-
rics. While our framework includes more BCs (e.g. based on walls’
orthogonality and distances between rooms), finding and quanti-
fying BCs that are meaningful to designers is not an easy task. A
possible way forward would be utilizing metrics of spatial evalu-
ation from the field of visibility graph analysis [16]. For example,
Through Vision [16, 38] can evaluate spatial regions in regard to
movement, while Visual Control [10, 16, 37] and Visual Control-
lability [16, 37] can evaluate spatial regions in regard to Control
[10]. Based on such a theory-driven approach, one may find more
meaningful modes of diversification for specific types of games, in
regards to elements of the levels’ usability and player-experience.
Such BCs would also be highly relevant to e.g. first-person shooters
(FPS) where lines of sight and lines of fire are highly relevant.

Another aspect that can be improved is the specialization of our
methodology for the FPS and dungeon crawler genres, or even its
expansion to other types of games, like Real Time Strategy (RTS)
or even platformers. For example, in the context of FPS games,
our proposed methodology can be improved by including more
types of openings, such as windows and exterior doors, treating
walls as obstacles of a variant height, or even extending along the
z-axis with multiple floors and stairs that connect them [2]. In
the context of dungeons, the levels can be be extended to include
interior elements, such as furniture and other items. Importantly,
this extension can be implemented as a discrete, automated step,
after the initial geometric diversification of the levels’ structure.
An inspiring example of this type is Dungeon Alchemist [9], a level
design tool that generates impressively detailed and feature-rich
rooms given their user-specified boundaries. Representing maps
for RTS games is also an attainable goal. By excluding the L3 part
of the DI, and adding details including bases and resources, each
“room” of the DI can be treated as a region of strategic importance
in the map. Alternatively, by treating the DI as if it was a side-view
instead of a top-down view, and applying minor modifications in
the constraints and BCs, our methodology can also generate certain
types of platformer levels. In this case the constraints must probably
be adapted to take into account gravity-related issues [33].

7 CONCLUSION

This paper introduces a way of representing room-based layouts
in a free-form, flexible way that can lend itself well to many types
of games set in square, hex, or ad-hoc spatial layouts. Through
the use of a constrained MAP-Elites algorithm, a designer can
control the generative output through a high-level, visual design
specification while also being able to see the full breadth of room
configurations laid out in a two-dimensional arrangement based on
chosen dimensions to explore. Results indicate that the algorithm
can handle a broad variety of design specifications and can create
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diverse, feasible levels in different grid formats. Future work aims to
improve the algorithm’s controllability by allowing the designer to
control the output during evolution and to extend its applicability
to more game genres.
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