

PrismArch

Deliverable No D2.1

Initial version of parametric design space

Project Title: PrismArch - Virtual reality aided design blending cross-disciplinary
aspects of architecture in a multi-simulation environment

Contract No: 952002 - PrismArch

Instrument: Innovation Action

Thematic Priority: H2020 ICT-55-2020

Start of project: 1 November 2020

Duration: 24 months

Due date of deliverable: Month 7, 31 May 2021

Actual submission date: 13/07/2021

Version: 1.0

Main Authors: Antonios Liapis, Konstantinos Sfikas, Georgios N. Yannakakis

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 2

Project funded by the European Community under the H2020
Programme for Research and Innovation.

Deliverable title Initial version of parametric design space

Deliverable number D2.1

Deliverable version Final

Contractual date of delivery 31 May 2021

Actual date of delivery 13 July 2021

Deliverable filename PrismArch_D2.1_0.98

Type of deliverable Report

Dissemination level PU

Number of pages 120

Workpackage WP2

Task(s) T2.1: Parametric definition of the solution space using the
principles, restrictions and rules of each design discipline
T2.2: AI-assisted content creation and design suggestions based
on evolutionary algorithms

Partner responsible UoM

Author(s) Antonios Liapis (UoM), Konstantinos Sfikas (UoM), Theodore
Galanos (UoM), Georgios N. Yannakakis (UoM)

Editor Konstantinos Sfikas (UoM)

Reviewer(s) Helmut Kinzler (ZHA), Daria Zolotareva (ZHA), Risa Tadauchi
(ZHA), Aleksandra Mnich-Spraiter (ZHA, Jeg Dudley (AKT),
Edoardo Tibuzzi (AKT), Arun Selvaraj (Sweco), Dinos Ipiotis
(Sweco), Oussama Yousfi (Sweco)

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 3

Abstract The objective of this document is to define the parametric space
that artificially intelligent algorithms will explore, as well as
mathematical formulas for measuring constraint satisfaction,
efficiency, and diversity in the different design disciplines
contributing to PrismArch. The document surveys how current
approaches in AI for architecture define representations,
functional objectives and constraints, and identifies formulas,
code libraries, and software that can be used for the purpose of
AI-assisted content creation in PrismArch. This document takes
input from the user and functional requirements of PrismArch
described in D1.1 (“Report on current limitations of AEC
software tools, leading to user and functional requirements of
PrismArch”).

Keywords Artificial Intelligence, Parametric Design, Possibility Space,
Design Intelligence, Spatial Analytics, Fitness Functions,
Constraints, Evolutionary Algorithms, Diversity Measures

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 4

Copyright

 © Copyright 2020 PrismArch Consortium consisting of:

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH)

2. UNIVERSITA TA MALTA (UOM)

3. ZAHA HADID LIMITED (ZAHA HADID)

4. MINDESK SOCIETA A RESPONSABILITA LIMITATA (Mindesk)

5. EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH (ETH Zürich)

6. AKT II LIMITED (AKT II Limited)

7. SWECO UK LIMITED (SWECO UK LTD)

This document may not be copied, reproduced, or modified in whole or in part for any
purpose without written permission from the PrismArch Consortium. In addition to such
written permission to copy, reproduce, or modify this document in whole or part, an
acknowledgement of the authors of the document and all applicable portions of the copyright
notice must be clearly referenced.

All rights reserved.

Deliverable history

Version Date Reason Revised by

0.1 15/4/2021 Table of Contents Antonios Liapis (UoM)

0.8 15/5/2021 Beta version for review Antonios Liapis (UoM)

 0.9 25/6/2021 Revised version for review Konstantinos Sfikas (UoM)

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 5

0.95 25/6/2021 Revised version for review Georgios N. Yannakakis
(UoM)

0.97 5/7/2021 Revised version for review Konstantinos Sfikas (UoM)

0.98 11/7/2021 Revised version for review Konstantinos Sfikas (UoM)

1.0 13/7/2021 Proof reading Spiros Nikolopoulos
(CERTH)

List of abbreviations and Acronyms

Abbreviation Meaning

AI Artificial Intelligence

PCG Procedural Content Generation (in Games)

EC European Commission

IP Intellectual Property

ToC Table of Contents

WP Workpackage

AEC Architecture, Engineering and Construction

BIM Building Information Modelling

CAD/CAM Computer-Aided Design & Computer-Aided Manufacturing

VR Virtual Reality

MEP Mechanical, Electrical, Plumbing

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 6

Executive Summary
This deliverable, grounded in a review of the state-of-the-art in the pertinent areas, aims to
map out the parametric space that artificially intelligent algorithms can explore, as well as
mathematical formulas for measuring constraint satisfaction, efficiency, and diversity in the
different design disciplines contributing to PrismArch. The document surveys how current
approaches in AI for architecture define representations, functional objectives and
constraints, and identifies formulas, code libraries, and software that can be used for the
purpose of AI-assisted content creation in PrismArch. This document takes input from the
user and functional requirements of PrismArch described in D1.1 (“Report on current
limitations of AEC software tools, leading to user and functional requirements of PrismArch”).

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 7

Table of Contents
1 INTRODUCTION 11

1.1 PrismArch Overview 11

1.2 Context of this Deliverable 12

1.3 Method for Collecting Data in this Deliverable 13

1.4 Structure of the Deliverable 13

2 DEFINING THE REPRESENTATION AND THE CONCEPTUAL SPACE 16

2.1 Survey 16

2.1.1 Design Problem Solving 16

2.1.2 Grid-based Representations 17

2.1.3 Graph-based Representations 19

2.1.4 Polygon-based Representations 20

2.1.5 Pixel-based Representations 20

2.1.6 Indirect Representations 21

2.1.7 Subdivision-based Representations 24

2.1.8 Representations based on Boolean Operations 24

2.1.9 Dual Representations 26

2.1.10 Ad-hoc Representations 28

2.2 PrismArch applications 29

2.2.1 Problem representation 30

2.2.2 Solution representation 30

2.2.3 Generation and mutation operators 30

2.2.4 Representation and user interaction 31

2.2.5 Data Collection during User Interactions 32

2.3 Software, Tools and Algorithms 33

3 FUNCTION EVALUATIONS AND CONSTRAINTS 36

3.1 Survey 36

3.1.1 Inherent constraints and function of architectural design 36

3.1.2 Structural Engineering 40

3.1.3 MEP engineering 45

Coordination between MEP disciplines: 45

MEP Systems optimization: 46

MEP service life optimization: 46

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 8

3.1.4 Sustainability 47

3.1.5 Conclusions 50

3.2 PrismArch applications 50

3.2.1 Constraints Arising from Inter-Disciplinary Collaboration 51

Inter-disciplinary constraints from the perspective of architectural design: 51

Inter-disciplinary constraints, from the perspective of structural engineering: 52

Inter-disciplinary constraints, from the perspective of MEP: 53

Inter-disciplinary constraints, conclusion: 53

3.2.2 Project-specific constraints 53

3.2.3 Fitness functions 54

Structural engineering: 54

MEP engineering: 55

Sustainability: 55

Conclusion: 56

3.3 Software, Tools and Algorithms 56

4 DESIGN EXPLORATION DIMENSIONS 60

4.1 Survey 60

4.1.1 General visual properties 60

4.1.2 Aspects of Space 63

4.1.3 Architectural space heuristics 63

4.2 PrismArch applications 68

4.2.1 Input from ZHVR: 69

4.2.2 Input from AKT II: 69

4.2.3 Input from Sweco: 69

4.2.4 Proposed dimensions of diversity: 70

Direct geometric evaluations: 70

Isovist and Visibility Graph - based evaluations: 70

4.2.5 Conclusion 70

4.3 Software, Tools and Algorithms 71

5 REALIZING QUALITY-DIVERSITY AND DESIGNER MODELING IN PRISMARCH 72

5.1 Algorithmic Background 72

5.1.1 Quality Diversity Algorithms 72

5.1.2 Designer Modeling 73

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 9

5.2 Vision arising from Workshops with AEC industry partners 74

5.2.1 Envisioning QD in PrismArch - ZHVR 74

5.2.2 Envisioning QD in PrismArch - AKT II: 76

5.2.3 Envisioning QD in PrismArch - Sweco: 78

5.2.4 ZHVR: Context of design parameters 79

5.2.5 ZHVR: Context of constraints: 79

5.2.6 ZHVR - context of optimization: 80

6 CONCLUSIONS AND FUTURE STEPS 83

7 REFERENCES 86

APPENDIX A: QUESTIONNAIRE AND RESPONSES 100

A.1 Original Questionnaire provided to partners 100

Questions: 100

A.2: Responses from ZHVR 102

A.3: Responses from AKT II 111

Responses from Jeg Dudley (AKT II) 111

Responses from Edoardo Tibuzzi (AKT II) 116

A.4: Responses from Sweco 118

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 10

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 11

▪ 1 INTRODUCTION

o 1.1 PrismArch Overview
The overarching goal of the PrismArch project is to achieve a “prismatic blend” between
aesthetics, simulation models and meta-information that can be presented in a
contextualized and comprehensive manner in virtual reality (VR). This blend will allow for
collaborative manipulation of the design and accurate assessment of new design decisions.
This goal passes through intuitive interactions in a VR world with blended graphics across
various types of simulation software that satisfies the needs of all types of designers in
parallel. PrismArch will create a VR-aided design environment that supports the major
disciplines that are typically engaged in an architectural project (architects, structural and
MEP engineers), facilitates the effective realization of an architectural project, and enhances
the overall decision making process through an action and reaction paradigm.

As editing single items in VR with controllers is time consuming, PrismArch expects to leverage
artificial intelligence (AI) as an assistive technology driven by the user in order to edit items
collectively and in an informed manner. AI tools will primarily be incorporated into PrismArch
for assistive design through the formulation of the design procedure as a parametric space
problem. The overarching goal of a VR-aided environment for collaborative editing permitted
by multiple users of different disciplines raises new challenges, as every modification can
impact a wide variety of elements in an architectural project. An aspect of the AI algorithms
developed in PrismArch is to detect and address potential conflicts and the failure of hard
constraints on the design’s function. When such conflicts or constraints are detected, the AI
tools will inform the corresponding author (architect or engineer) and suggest potential
solutions. By obtaining the constraints that should overrule such a project, provided by the
AEC experts, a set of feasible solutions can be formed. This will be achieved through
parameterizing the design process for the targeted disciplines in order to define a
multidimensional solution space, and then generate appropriate alternatives to the user’s
designs and present them as suggestions which the users can take into account for adjusting
their design. In order to best assist the designers in their decision-making, AI tools will
visualize this solution space by defining design exploration dimensions and generate diverse
solutions that satisfy the functional requirements (as hard constraints) but exhibit different
styles in order to provide more, and more diverse, suggestions for a designer to choose from
or be inspired by. PrismArch will take advantage of evolutionary computation [1] to search
the solution space driven by measures of quality and diversity. By exploiting artificial
evolution, the solution set will be confined and traversed fast and efficiently, allowing
PrismArch to make real-time AI-assisted suggestions that can play a critical role either in
conflict resolution or even serve as a driving force of inspiration. Finally, we recognize that
not all disciplines or individual designers have the same needs, preferences, or style. The AI
tools of PrismArch will incorporate models for each type of designer in order to adapt
automatically the AI-generated content based on the preferences of the individual designer.
This will lead to personalized suggestions, via machine learning and statistical models trained
on real interaction data. The main dimension of adaptation will pertain to the design
dimensions explored by the algorithm; by adapting stylistic priorities, different suggestions
will be shown to each designer that better match their core preferences and style. Finally, a
new form of designer modelling [2] will be explored in terms of different disciplines, which
can also adjust the types of constraints prioritized depending on the discipline.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 12

o 1.2 Context of this Deliverable
This deliverable reviews the relevant literature in terms of the algorithmic representations of
the design space of architectural projects, and defines in computational terms the solution
space of each design problem (i.e., architectural, structural, or MEP). The deliverable follows
the “prismatic blend” of PrismArch and identifies that design space representation, functional
constraints, and designer preferences must be blended and integrated into an AI tool in order
to facilitate the generation of suggestions that can be useful, feasible, diverse, and
personalized. In order to identify the correct way to algorithmically represent the problem,
to formulate the constraints, and to encompass a broad range of stylistic dimensions in a way
that can be traversed by an evolutionary algorithm, we perform a survey of the related work
on design and engineering optimization, as well as related fields on computer-aided design
and machine learning.

Figure 1: PrismArch AI guidance levels envisioned in D1.1.

The earlier deliverable D1.1 (“Report on current limitations of AEC software tools, leading to
user and functional requirements of PrismArch”) reviewed the role of AI in the context of
PrismArch and identified the different levels at which AI guidance can be deployed. As shown
in Figure 1 (which is directly integrated from D1.1), there are varying levels of AI guidance that
can be deployed, from low-level but general guidance on rule-based design criteria based on
codes and regulations, to high-level but very project-specific guidance such as time
constraints or cross-disciplinary constraints. In order to maximize the impact of AI guidance
developed in PrismArch, D2.1 focuses mostly on the intermediate level (“mid-level guidance”
in Fig. 1) which has the opportunity to be specific to a project by integrating designer-specified
constraints in the form of room datasheets but also generalizable by e.g. swapping to new
datasheets. However, constraints informed by regulations are also discussed in the context
of functional constraints in D2.1. Moreover, D2.1 presents designer preferences that can be
personalized through designer modelling [2]; this opens the potential of more project-specific
guidance or author- and discipline-specific personalization of AI suggestions.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 13

o 1.3 Method for Collecting Data in this Deliverable
This deliverable studies past and current work on evolutionary computation for parametric
design, revisiting studies from early years but mainly attempting to map out the state-of-the-
art that can inform the PrismArch implementation of Quality-Diversity search and designer
modeling. To collect the necessary materials to inform the survey conducted along three
directions (representation, constraints, and exploration dimensions, as explained in Section
1.4), a thorough bibliographical search was conducted through Google Scholar, Semantic
Scholar, Arxiv and our own networks of contacts in evolutionary computation. It should be
noted that much of the state-of-the-art in both AI-assisted design and modeling originates
from digital game development, and thus several of the surveyed papers come from academic
conferences on Game Artificial Intelligence, in addition to traditional parametric design
publications. Finally, relevant publications for generative and evolutionary art are explored,
especially in Section 4, since they cover quantitative evaluations of stylistic choices and
dimensions for exploration.

In order to better understand the expectations of the AEC partners of PrismArch and situate
QD and designer modeling tools within their needs, a number of Maseterclasses of the
relevant AI technologies (see Section 5.1) were made and free-form workshops were held.
These seminars and discussions were formalized through a questionnaire created by UM and
completed by ZHVR, AKT II, and SWECO. The questionnaire, presented in full in Appendix A.1,
aimed to collect information about practical constraints and exploration dimensions that arise
during the process of a project, taking into account the requirements of cross-disciplinary
collaboration. Partners’ responses, provided in full in Appendix A, informed the PrismArch-
specific suggestions for each of the three sections (Section 2, Section 3, and Section 4).
Moreover, the questionnaire included more general questions (Questions 6 and 7 in Appendix
A.1) regarding the grand vision of the application of the algorithms in question for each
discipline. These responses warrant further analysis, and are discussed in Section 5.

o 1.4 Structure of the Deliverable
This deliverable follows the premise of a “prismatic blend” between design space
representation, functional constraints and designer preferences, and splits the survey of the
state-of-the-art and the proposals for PrismArch AI-navigable design space into three
sections. Section 2 focuses on the representation of the spatial and functional aspects of the
design problem, and the operators that could allow evolution to modify and improve such
aspects. The main survey of Section 2 is on the genotype-phenotype mapping [3] which can
facilitate a compact representation of the design space in order for an evolutionary algorithm
to explore, as well as on the genetic operators that can modify the genotype in controllable
ways. Section 3 focuses on the functional aspects of the design problem and includes hard
constraints on the requirements from a design or engineering perspective. Section 3 surveys
related constrained engineering problems [4] and specifically architectural design, reviews
relevant simulation-based approaches and functional metrics, and formalizes the constraints
and mathematical formulations for bringing evolving designs closer to feasibility. Section 4
focuses on the stylistic preferences of a design project, relying as much on the specific
disciplines of architecture or engineering as on broader cognitive aspects of perception and
beauty [5]. This section identifies important visual features relevant to space, which can be
quantified in a way that can help the evolutionary search towards diverse suggestions. The
aggregation and weighting of these quantifiable formulations will also form the designer

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 14

models which can drive evolution towards personally interesting areas of the design space.
Section 5 goes beyond the original intent of D2.1, which was to map out the design space,
and discusses the algorithmic background and envisioned advances beyond the algorithmic
state-of-the-art, based on workshops conducted by AI experts and AEC experts. The paper
concludes with Section 6, while all questionnaires carried out for collecting the data from
partners (see Section 1.3) are in Appendix A.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 15

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 16

▪ 2 DEFINING THE REPRESENTATION AND THE CONCEPTUAL
SPACE

This section focuses on the algorithmic representation of the design problem, in a way that
an artificial intelligence can iterate upon and improve based on constraints or stylistic
preferences presented in Sections 3 and 4 respectively. To a large extent, this section views
problem representation from the perspective of evolutionary computation, which will be
used for optimization and quality-diversity search [6,7].

Artificial evolution operates on a genotype, i.e. compressed information that is converted to
a phenotype which is the final design artifact being evaluated and optimized. The
representation thus largely concerns this genotype-to-phenotype mapping [3] and the ways
in which the genotype can be modified towards better solutions in terms of its phenotype.
These modifications to the genotype are referred to as genetic operators [1] and are largely
grouped under recombination (when more than one genotypes exchange genetic material)
and mutation (when one genotype changes stochastically). The representation of the
genotype and the type of genetic operators that facilitate its evolution are critical to the
performance of the algorithm and also depend heavily on the design problem at hand.
Therefore, a survey of representations and operators from related fields of architecture,
parametric design, and game level generation highlights the most prominent approaches.

o 2.1 Survey
There is a broad variety of representations for spatial layouts and architecture. Extensive work
has also explored evolutionary computation, genotype-to-phenotype mappings, and genetic
operators in level design for computer games; such knowledge is directly transferrable to the
goal of PrismArch. The following survey highlights a plethora of methods for representing and
evolving content; however, it starts with a more general exposition of the thinking process
that needs to be followed in order to define a problem space (Section 2.1.1).

▪ 2.1.1 Design Problem Solving

In order to endow an artificial intelligence (AI) the ability to solve an architectural or
engineering problem, a fundamental understanding of the principles of problem solving is
necessary. Polya [8] identified four principles for problem solving: understanding the problem
(i.e. restating it in terms understood by the problem solver), devising a plan (i.e. considering
the steps needed to solve the problem as well as caveats and edge cases), executing the plan
(until it is clear that it will not yield results) and reflecting on the outcomes (i.e. improving
problem solving abilities based on successes or failures of the plan). The problem solving
premise of Polya is well-suited for evolutionary search, where understanding the problem
entails designing appropriate mathematical formulations of e.g. quality (fitness function) or
constraints (feasibility evaluation), devising a plan refers to the design of the genetic
operators which can move the candidate solutions closer towards a target outcome,
executing the plan in the sense of performing the evolutionary run, and reflecting on the
outcomes as the presentation to an end-user of the best evolved outcomes. Newell et al. [9]
are even more explicit in their framing of problem solving as a search within a problem space.
While Newell et al. focus on the conceptual processes of recognizing solutions, generate-and-
test search and heuristic search, these terms and algorithmic processes are widely used in
evolutionary content generation [10]. Importantly, Newell et al. do not associate problem

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 17

solving as random search, but instead as conducted by defining a set of operators for applying
changes to a candidate solution, and choosing which operator to apply at which time. The
evolutionary approach followed in PrismArch follows this method, defining genetic operators
for changing a candidate solution; this Section describes the representation and genetic
operators of such solutions.

Solving an architectural design problem, specifically, is a challenging endeavor which requires
iteration and reflection. This is due to the fact that the design solution is “a result of
negotiation between problem description and solution” [11]. Based on a chronological review
of architectural design models, Lawson [12] suggested that such design problem solving
processes follow an iterative, three-stage model of analysis, synthesis and evaluation.
Problem understanding only occurs after multiple iterations of analysis, synthesis and
evaluation; indeed, a conjecture of the design and the problem specification often proceed in
parallel (influencing each other) throughout a design process [13].

Motta and Zdrahal [14] characterize a parametric design application as a mapping from a six-
dimensional space to a set of solution designs. The six dimensions consist of (1) parameters,
(2) value ranges of these parameters, (3) constraints, (4) requirements, (5) preferences, and
(6) a global cost function. This formulation is especially relevant as framing for this deliverable,
as Section 2 describes the parameters and value ranges, Section 3 describes the constraints,
requirements, and global cost function while Section 4 describes the preferences of the
problem.

▪ 2.1.2 Grid-based Representations

Grid-based representations divide the site into a grid of equal-sized cells and partition objects
so that they can be located within a cell [15]. This is a popular representation for optimization
because it is straightforward to encode in a computer program and is also predominantly
used in computer games, where the grid consists of tiles of different types such as the
gameworlds of Super Mario Bros. (Nintendo, 1985) or Sid Meier’s Civilization II (MicroProse,
1996). Grid-based representations have been especially prominent for automated content
generation (in games and beyond) due to their straightforward encoding as a genotype.

Sentient Sketchbook [17] represents simple tile-based game levels in a grid-based
representation, and encodes them directly in the genotype as a two-dimensional matrix of
integers. Each integer is mapped to a specific tile type. This genotype-to-phenotype mapping
is a direct encoding [3], as opposed to indirect encodings discussed in Section 2.1.6. Evolving
such a genotype is straightforward, as small changes in the genotype result in small changes
in the phenotype. In terms of genetic operators, Sentient Sketchbook uses both
recombination and mutation (see Figure 2). Recombination uses a two-point crossover [1]
which splits the map into three pieces and exchanges the middle piece with that of another
individual. Mutation alters a small portion of the maps’ tiles: each tile has an equal chance of
being swapped with a randomly chosen adjacent one, or changing the tile’s type. Other tile-
based representations of levels follow a similar approach to Sentient Sketchbook. The
evolutionary dungeon designer [18] represents rooms as an array of integers in the genotype
and applies two-point crossover. Mutation in the case of the evolutionary dungeon designer
is very high, however, and the mutation operators can either change a tile’s type or rotate
the entire genotype by 180o.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 18

Figure 2: Genetic operators in Sentient Sketchbook [17]. Left: recombination through 2-point
crossover results in two offsprings with parts of each parent level. Right: mutation may add

or remove impassable tiles or swap adjacent tiles. Source: [157]

Ashlock et al. [19] highlight different ways of representing grid-based levels, including direct
and indirect representations. Ashlock et al. differentiate between a direct representation
where integers specify the type of each tile (at the minimum, a binary distinction between
passable and impassable tiles), and a direct representation where integers specify the
connectivity of each tile (i.e. which adjacent tiles can be accessed from this tile). The latter
representation (termed “chromatic” by Ashlock et al.) allows for “walls” that do not take up
an entire tile, and moreover allows for one-way paths. For the chromatic representation,
Ashlock et al. use two operators: uniform crossover and uniform mutation. Uniform crossover
iterates through two individuals’ genes simultaneously and has a probability of using one or
the other individual’s genetic information in that location to produce an offspring. Uniform
mutation iterates through one individual’s genes and has a probability of randomly assigning
a tile’s type at that location.

Sonancia [20] generates rooms for a horror game using a direct representation where each
integer specifies the ID of the room. In addition to this direct tile-based representation, the
genotype contains information about the location of doors (as tuple objects describing which
rooms are interconnected) and monsters or quest items (as tuple objects describing their type
(i.e. item or monster) and the room they are placed in). Sonancia evolves levels only via
mutation: mutation can shift a room’s walls, divide rooms, connect rooms with doors or
remove doors (two rooms can only be connected with one door), move monsters’ or items’
assigned rooms (ensuring one monster per room and one item per room) or add new
monsters. After mutation is applied, a flood fill algorithm ensures that rooms are not
disconnected and are sufficiently large; if not, the gene is repaired to assimilate small or
disconnected rooms with adjacent ones, moving items or monsters as needed.

Another instance of direct representation from the field of games is the work of Karavolos et
al. [21] on evolving multi-floor game levels. Due to the need to maintain elevation
information, each grid location was assigned two integers on the genotype: one representing
the floor it was on, and one representing whether it contained a game-specific item pickup.
Moreover, while the phenotype is 20x20 tiles, the genotype represents it as a 4x4 grid of cells
that each contain 5x5 tiles. Recombination is implemented by randomly picking a cell from
either parent at each position of the cell grid. When applying mutation, each cell may be

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 19

mutated by one of the following variants: Move Powerup to another cell, Grow Cell or Erode
Cell (in terms of either first-floor tiles or walls), Place Stairs next to a random first-floor tile,
Place Block or Dig Hole (to add ‘chunks’ of tiles of the same elevation). An additional repair
function is applied after recombination and mutation to ensure that unreachable areas (e.g.
an island of first-floor tiles without a stair) becomes reachable.

▪ 2.1.3 Graph-based Representations

Understanding the most basic, high-level constraints and properties of an architectural design
has often been accomplished through graph visualizations [22]. Graphs can contain
information for each room and convey the connectivity with other rooms and spaces. While
geometric graphs [23] (or spatial networks) contain information about the coordinates, sizes,
and distances of the physical spaces, other graph representations can convey the high-level
connections without having to conform to the spatial constraints of the problem [24]; we
refer to the latter as non-geometric graphs to avoid confusion. Since non-geometric graphs
regarding rooms and their connections are often provided by the client, there is limited work
in actually optimizing such high-level abstractions. However, work in game content
generation has explored an evolutionary graph expansion strategy in order to produce an
abstraction of a video game level. In this work, Karavolos et al. [25] begin with a minimal graph
representing the start and the end of a level and through evolution increase the graph by
adding nodes with different in-game functions (e.g. puzzle room nodes, boss fight room
nodes). The genotypes stores the information as a set of nodes and edges, with nodes storing
the type of room and edges as tuples of the IDs of the two connected nodes and whether the
edge is two-sided (i.e. allows players to go in either direction between connected rooms).
Genetic operators included are only for asexual mutation, with options of adding or deleting
a node, changing a node’s type, and adding and deleting edges between nodes. The resulting
graph was then transformed into a playable level through a layout solver [26]. The layout
solver ensures that the correct connections between rooms in the graph is maintained, but
may add some or many empty rooms in-between in order to ensure that the spatial
constraints are met (see Figure 3).

Figure 3: Graph-based level generation by Karavolos et al. [25]. Left: the mission graph,

evolved via graph evolution. Right: a spatial layout of the left graph, based on a constraint
solver. The yellow nodes are shown in green and the blue nodes in blue. As noted, additional

rooms are added in the spatial layout to account for geometric constraints. Source: [25].

As noted above, geometric graphs have been particularly useful within the domain of
architecture and especially floorplan layouts. Quality assessments regarding optimal
connections, sizes, and distances based on a graph layout have been proposed by [27],
although that work did not actually optimize these algorithmically. A variant of the geometric
graph where the nodes are replaced with rectangular rooms of appropriate size has been

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 20

used in automated floorplan generation [28]. In this work by Arvin and House [28], rooms of
different sizes are initially represented as appropriately sized circles and their connections as
graph edges. Rather than optimize this layout, the authors performed a physics simulation by
assuming that the edges were springs drawing all the nodes together, while the circles were
solid and stopped rooms from coming too close together. This animation was deemed
valuable for its “responsive design” [28], and constraints were inherently satisfied by making
compact designs (due to springs drawing rooms together) while maintaining the connections
between rooms. Once the physics simulation was completed, the circles were replaced with
rectangular rooms of appropriate size centered around the circles’ locations.

▪ 2.1.4 Polygon-based Representations

Ultimately, most of the results of automated design are rendered as polygons or pixels (see
Section 2.1.5). However, polygons are not often used directly as genotypic information. For
instance, much of the work on floorplan generation encodes the (polygonal) space as space
partition trees that subdivide a larger space [29, 30, 31, 32, 33], an example of which (by
Doulgerakis) is included in Section 2.1.7.

An intuitive approach for representing the space as polygons is by encoding the coordinates
of rectangles that compose the space: for instance, Keatruangkamala and Sinapiromsaran
[34] encode each room as a rectangle with the genotype containing its top left corner’s
coordinates and its height and width. Michalek et al. [35] used a more complex way of
representing rectangular “units” using an arbitrary reference point, the distance to each wall
from that point (North, South, East, West) and the size of the windows on each of the four
walls. Michalek et al. distinguished units into rooms (living spaces), boundaries (which contain
other units), hallways (which do not have walls and connect other walled rooms), and
accessways which are special types of hallways that intersect two units. It should be noted
that the genotype does not contain information about the type of unit it represents (except
implicitly based on which parameters are present, e.g. no walls for hallways) and instead the
order in which values appear on the genotype are used to instantiate rooms based on a pre-
authored mapping. Therefore, the genotype can control the dimensions and window
placement of rooms but not the number or types of rooms. In both cases examined here, the
fixed length of the genotype ensures that the right number and type of rooms is present as
intended by the designer. However, the results are very constrained by the rectangular nature
of the rooms and especially by the fact that the algorithm can not add or remove e.g. hallways
when needed. A more indirect representation with a genotype of variable length would be
preferable if more substantial changes to the layout would be desirable or when the optimal
number of rooms and halls is not known in advance.

▪ 2.1.5 Pixel-based Representations

Many of the 2D representations discussed in this Section are ultimately rendered as 2D
images; however, the generator rarely operates on the level of pixels and usually operates on
a higher level such as a grid representation (see Section 2.1.2). Recent advances in deep
learning tend to exploit pixel regularities that they have discovered on a corpus of images
they are trained on and generate new content at the pixel level [36]. While these approaches
are not directly tied to evolutionary computation, which is the focus of this deliverable, it is
worthwhile to survey a couple of examples that generate designs at the pixel level.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 21

The first application for generating pixel-based representations of floorplans was by Huan and
Zheng [37], who used a Pix2Pix generative adversarial network (GAN) to produce colored
images that represented rooms, doors and windows of a layout. A dataset of plan drawings
of apartments collected from a property website was converted into colorful images of
colored “blocks”. Each color represented a room type, or walkways, doors, windows, and
balconies. The authors explored the use of different inputs and desired outputs, such as the
plan drawing as input and generating the color labeled map as output or vice versa. It should
be noted that the resulting images were not used for a design goal, such as converting it to a
CAD drawing or developing it further through AI or human intervention. Chaillou [38]
introduced archiGAN, a multi-step pipeline via deep learning which translated an empty
canvas to a building floorprint, followed by a room split, and completing it with furnishings.
The training set included over 700 annotated floor plans. Each transformation in the pipeline
was handled via a generative adversarial network which was trained independently. It should
be noted that results rendered as pixels often included artifacts (although the general shapes
and colors were visible, and additional steps for rendering via additional GANs or through
scripts for vectorization [39] could convert the result into an editable and usable result.

The final relevant deep learning approach for generating layouts at the pixel level is
Graph2Plan [40]. Unlike the previous examples, Graph2Plan uses the RPLAN large-scale
floorplan dataset containing more than 80,000 human-designed samples. These human-
designed samples are processed in a scripted fashion to derive a graph representation by
finding the size and position of each node (and its edges) from the actual floorplan. Each node
also contains information on the type of room it represents, while the resulting image consists
of colored blocks similar to Huang and Zheng [37] (but without extra elements such as doors
and windows). The deep learning model uses as input the geometric graph (see Section 2.1.3)
and the building boundary. The model produces a pixel-based representation of the floorplan,
which is then processed through another network to convert the freeform colored pixel forms
into boxes that more accurately represent rooms. This final step ensures that the tool can be
integrated into a user interface that allows the user to create and edit floorplans by providing
only an input boundary and a partial graph or fa few adjacencies.

▪ 2.1.6 Indirect Representations

An indirect representation encodes the necessary information to produce the phenotype in a
compact genotype. For instance, if a phenotype is represented as a grid of tiles, a direct
representation would contain information about each tile (see Section 2.1.2); if a phenotype
is represented as a set of polygons, a direct representation would contain the coordinates of
each point of each polygon. On the other hand, an indirect representation can produce the
above phenotypes without storing all information of the phenotype.

The most popular and expressive indirect representations within evolutionary computation
at large are arguably genetic programming and neural networks.

Genetic programming [41] produces computer programs, usually represented in syntax tree
structure, that must be run in order to evaluate their quality. Genetic programming has been
applied to many different tasks such as image processing [42, 43], game playing [44, 45], and
hardware component design [46, 47]. GP has also been applied to evolve spatial layouts. The
premise of modularity in designs by Le Corbusier has been an inspiration for genetic
programming methods. A notable example is by Asojo [48], who encoded program rules
based on the main elements of Le Corbusier’s architectural style and used genetic

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 22

programming to combine them into a specific 3D structure. This example uses shape
grammars that are well-defined by the (expert) developer. Similarly, Coates and Makris [49]
encoded the Dom-ino house by LeCorbusier as a set of “boolean (constructive solid geometry)
operations” [49] and used genetic programming to create combinations of 13 copy and move
functions to produce 3D “variant” Dom-ino houses through interactive evolution [50]. Moving
from 3D structures to 2D floorplan optimization, Jagielski and Gero [51] use Genetic
Programming to evolve floorplans on multiple floors through an ad-hoc mapping between
genotype and phenotype and is further discussed in Section 2.1.10. Moreover, Doulgerakis
applied genetic programming to create floorplans through space subdivision which is
discussed in Section 2.1.7.

Artificial neural networks (ANNs) are function approximators which can represent any output
as a non-linear function of its input. In generative art and music, neural networks have been
applied to produce images by assigning colors using the pixel coordinates as inputs [52] or by
using an underlying human melody to produce drum or instrument accompaniments [53].
Specifically, the ANNs used for such generative art tasks encoded additional activation
functions than those common in e.g. machine learning or deep learning. The compositional
pattern-producing network [3] (CPPN) includes activation functions that can represent
patterns such as symmetry, reflection, or repetition. ANNs and CPPNs as genotypes have a
very indirect mapping with the phenotype; indeed, changing the set of inputs that are
processed by the ANNs can still lead to valid results and make the representation capable of
infinite resolution [54]. CPPNs and ANNs are usually evolved through the neuroevolution of
augmenting topologies approach [55] (NEAT), which includes specialized recombination and
mutation operators. Recombination can only be applied between networks that are
structurally similar, and merges the two network structures (increasing the size of both
individuals) while inheriting randomly between the two individuals if they have edges or
nodes that match. Mutation can add edges, nodes, change the weights of edges, or randomly
assign a new activation function on a node. In terms of design problems, ANN-based
representation has been applied to generate terrain, 2D and 3D models; these are the most
relevant representations to PrismArch and are discussed below.

ANNs have been used to create heightmaps for game terrain in Sentient World [56]. A
heightmap operates on a grid layout and specifies the height of the terrain in each tile (see
Figure 4); it can be mapped in two dimensions by creating colored bands (e.g. low height
values can be mapped as water, very high values can be mapped as mountaintops, etc.) or as
a 3D terrain. In Sentient World, the ANN representation could be mapped to any resolution
of game terrain by specifying the grid size of the phenotype. Specifically, the {x,y} coordinates
of each tile’s midpoint was passed as input to the ANN, and a single output determined that
tile’s height. Sentient World was a design tool, allowing the designer to specify the high-level
patterns (on a low-resolution grid) and tasked the ANN to replicate as many of these patterns
as possible in a higher-resolution grid. The tool thus took advantage of the infinite resolution
potential of ANN to the fullest. ANNs were evolved towards novelty via the NEAT algorithm,
and then trained via backpropagation to match the patterns of the designer’s canvas.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 23

Figure 4: Terrain generation based on artificial neural networks in Sentient World [56]. The

tiles’ centers of the low-resolution grid (a and b) are processed through a neural network (c)
to predict the terrains height (low as blue, high as brown). The trained ANN can produce a
higher-resolution image (e) if tiles’ centers at a higher resolution are provided. Source: [56]

CPPNs were used to create polygons in 2D for a game-specific problem of spaceship design
[130]. The spaceship was represented as a polygonal mesh, with specific constraints regarding
e.g. that the mesh is contiguous and has no holes (see Figure 5). A similar approach was
followed to generate polygons of flowers [57], with an even stricter generative representation
to ensure symmetries.

Figure 5: Spaceship polygon generation by Liapis et al. [130]. The vertices of a circle are

processed by a CPPN which produces new coordinates for them. Then, a reflection is merged
with the previous polygon to create a symmetrical shape (d), and thrusters and weapons are

added (e). Adapted from [130].

CPPNs were used to create 3D structures which were evolved interactively on a public website
named Endless Forms [58]. The mapping from CPPN to the phenotype (which is a lattice of
voxels that can be empty or solid) is similar to Sentient World: the {x,y,z} coordinates of a pre-
defined lattice is given as input to the CPPN, with the output being a single real number which
maps to solid or empty depending on whether it is above or below an ad-hoc threshold. The
3D structures are on a 10x10x20 voxel lattice, and thus appear blocky: a marching squares
algorithm is applied to create a smoother transition and add curves to the final 3D artefact
shown to the users. Through the Endless Forms website, users can choose others’ creations
and evolve them further via interactive evolution [50] and then submit them for 3D printing
and produce a physical artifact of their work. Grbic et al. followed a similar approach via an
evolving ANN, using the {x,y,z} coordinates of a predefined 3D lattice and receiving as output
the type of block of a Minecraft (Mojang, 2011) building to place at that position. In this case,
the ANN returned multiple outputs (one per block type or per block type rotation, in case
orientation of the blocks mattered) and the block type with the highest value in the output
was chosen.

Another indirect representation for generating terrain heightmaps is introduced in [59]. This
generative representation evolves a set of rules for cellular automata [60] which can

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 24

recursively subdivide a space into progressively smaller segments and define the height at
their center-points. Operators for this representation included 2-point crossover for
recombination, and a point mutation that had a chance to change every rule by tweaking one
of the nine parameters that defined it.

▪ 2.1.7 Subdivision-based Representations

An indirect form of encoding that is so widely used that it requires its own section is space
partitioning or subdivision. As Koenig and Knecht define it, “a subdivision algorithm is
understood as the recursive division of an area into smaller rectangular areas by edge-parallel
slicing” [30]. The point and direction of the slicing can be randomized, determined by rules,
or encoded in the genotype. The vast majority of the literature focuses on subdivisions along
a horizontal or vertical axis, and always dividing a rectangular bounding box into smaller
rectangles. Evolutionary computation has often been used with subdivision algorithms [29,
30, 31, 32, 33], as it is straightforward to encode the slices’ coordinates and direction into a
genotype and apply them in the order that they appear in the genotype. We focus instead on
certain subdivision approaches that introduce some innovations.

Doulgerakis applied genetic programming to iteratively partition a predetermined space into
smaller subdivisions. Unlike most other approaches, the representation of Doulgerakis
included non-orthogonal slashes that could create more interesting layouts. The subdivisions
were assigned as rooms; the purpose of each room and the general quality of the layout was
determined from a pre-authored specification file describing the types of rooms required,
their connections, and their surface ratios. The genotype of Doulgerakis was modified via
recombination or mutation. Recombination followed the premise of one-point crossover by
selecting a random breakpoint in each tree-structure and exchanging the sub-trees between
individuals. Mutation chose a random brea-point in the tree-structure, removed the sub-tree
and replaced it with a random tree-structure at that location.

Another interesting partition of the space (although not, in essence, subdivision) comes from
Schoenauer [61], which encoded a space as a set of Voronoi cells. The variable-length
genotype consisted of tuples with the coordinates of the Voronoi midpoint and a binary value
defining it as solid or empty. This representation was not applied for floorplan generation in
this example, but instead for the engineering problem of the cantilever plate [61]. Inoue and
Takagi use a similar approach, saving only the centers of the rooms and applying a flood-fill
style expansion to expand each room in four directions. While Inoue and Takagi use a grid
map for the phenotype, the genotype is a compact indirect representation (where any
floorplan resolution can be mapped to a preset number of rooms’ central coordinates) which
is deterministic and will always produce the same layout based on the scripted expansion
rules. Similar to subdivision algorithms, the floodfill by Inoue and Takagi ensures that the
entire space is occupied by rooms; unlike subdivision, however, non-rectangular rooms can
occur in this way. It should be noted that Sonancia [20] (see Section 2.1.2) expands rooms
outwards in a similar fashion, however this expansion is performed by a genetic operator and
thus a direct representation of all tiles of the floorplan is required in the genotype.

▪ 2.1.8 Representations based on Boolean Operations

Another indirect form of encoding that in some ways is the opposite of subdivision combines
primitive shapes (in 2D or 3D) together to produce a complete layout. In this encoding, the

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 25

genotype contains descriptions of shapes that are iteratively added or subtracted from a
“canvas” (which can begin as solid or empty, depending on the encoding).

A straightforward instance of this type of encoding deals with floorplan generation and
operates on a two-dimensional canvas (and a space that is often, but not always, partitioned
as a grid). Ashlock et al. [19] suggest two indirect representations for the problem of maze
generation. The first assumes that the canvas starts as empty space, and the genotype places
“lines” of variable length and direction which can be additive (i.e. add solid space) or
subtractive (i.e. remove solid space). The genotype stores information about the placement
of each line as two long-form integers: one integer is the index of the tile where the line starts,
and the second integer is bit-sliced to determine (a) whether the line consists of passable tiles
or impassable, (b) the direction and (c) the length of the barrier. Another variable is included
in the genotype that determines the number of impassable tiles that can be added in this way;
if this number is reached the remaining barrier commands are ignored. The second indirect
representation by Ashlock et al. assumes that the canvas starts off as fully solid and is “carved
out” into rooms or corridors represented in the genotype as pairs of long integers. The first
integer represents the coordinates of the tile where the placement begins, while the second
integer is bit-sliced to determine whether (a) it represents a room, a horizontal corridor or a
vertical corridor, and (b) to determine its dimensions.

Following up on this earlier work, Ashlock and McGuinness [62] evolved dungeons for role-
playing modules using a solid initial canvas and large integers for an indirect representation.
In this case, the representation is generative and involves several iterations of slicing the
integers and filling remaining unfilled dungeon tiles with other integers. Genetic operators
included a two-point crossover (more details in Section 2.1.2) while the mutation operator
chose a few random integers and randomized them. Unlike direct representations, these
mutations could have unforeseen consequences in the phenotype (dungeon) due to the
generative representation.

Cachia et al. [63] represented large, two-floor game levels in two indirect ways, one per floor.
In this case, the canvas for both floors starts as fully solid. The genotype contains information
for both the ground and the first floor, however these are applied to produce the phenotype
in sequence (see Figure 6). First, specifications of the ground floor carve out the space at all
heights, essentially making an open “hole” with view of the sky. Second, specifications of the
second floor carve short “tunnels” into the solid space and place floating platforms on open
space. For the ground floor, the representation is defined by corridors and rooms. Rooms are
represented by their central coordinates and size, corridors are represented by their
coordinates and the corridor’s width and length (negative length aligns corridors vertically
rather than horizontally). For the first floor, a random digger approach is used: an agent
converts impassable space into passable by moving and turning at random (guided by
probabilities) and adds stairs to the ground floor. The digger begins at the center of the map
and is represented in the genotype as five probability values: the probability to move forward,
to turn left, to turn right, to move onto a visited cell, to place a flight of stairs. To avoid a low
locality in the search space by having a digger create different second floor “trails” from one
generation to the next, a seed for all diggers’ randomness is set at the start of evolution. The
genotypes evolve only via mutation, which adjusts the current parameters in the genotype by
increasing or decreasing them by a random value.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 26

Figure 6: Two-floor game level generated by Cachia et al. [63]. Left: the bottom floor is

generated by subtracting rectangles (rooms and corridors) from a solid space. Right: the top
floor is generated with a digger agent that adds or removes solid space depending on the
content of the bottom floor. Stairs are also added by the digger agent (shown in brown).

In architecture, Wang et al. [64] explored the generation of the massing volumes of buildings
through an additive or subtractive approach. The subtractive algorithm created a building
massing design by removing several parts from a maximal mass. Since subtractive elements
were always rectilinear prisms, when such subtractive elements overlapped, the result was a
jagged edge (facade) on the building. The additive algorithm follows an inverse operation, and
creates the building massing by combining several mass elements (additive elements). The
subtractive approach, which started from a simple maximal mass properly aligned to the
boundaries of the building space was deemed preferable to the additive approach which
could result in chaotic arrangements, huge overhands, and free-floating masses.

Bao et al. [65] use an additive approach to represent a building layout as a union of a set of
(overlapping) boxes. These boxes are optimized through constrained gradient descent, rather
than evolutionary computation. An interesting addition of Bao et al. however is in the display
of the alternatives of this process, which is performed in the form of graphs that cluster good
but diverse layouts as single points that the user can visit through a user interface. The
alternative designs are shown in relation to the user’s currently viewed design, showing how
similar they are based on the distance of the nodes on the graph.

▪ 2.1.9 Dual Representations

In many instances of automated solvers for architectural or engineering problems, multiple
representations are required. As a simple example, a top-down layout is one representation
while a 3D version of this layout is another. There are ways to automate the conversion from
one representation to another: relevant examples include the generation of a 3D BIM model
[66] from a 2D CAD drawing through scripted rules, the generation of a floorplan from a
connectivity graph through deep learning [40] or constrained programming [25]. Note that in
indirect embryogenies, a compact set of instructions generates a complex phenotype
deterministically (always returning the same phenotype from the same phenotype). Instead,
in these cases the genotype produces deterministically an interim phenotype (such as a room
connectivity graph) which can be inspected by a human user before proceeding to the
transformation into a more complete structure (the final phenotype). This transformation

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 27

from interim phenotype to final phenotype is often stochastic, and therefore it can also be
optimized.

Figure 7: Evolution at two levels of representation for dungeons by Liapis [67]. Left: the

dungeon segments’ properties are represented as characters (e.g. E: empty segment) while
the presence of walls (#) determine the connectivity of segments (magenta connections in
middle figure). Right: each segment is evolved separately based on specifications from the

left figure, and stitched together to create a complex, high-resolution dungeon. Source: [67]

While many transformations from one format to another could be included in this analysis
(indicatively, extrusion of walls from a layout to a 3D model or cellular automata for
generating a more complex heightmap from a map sketch [17]), this section focuses on
instances where evolutionary computation is applied both to create the interim phenotype
and –in a second optimization round-to transform the interim phenotype into the final
representation. This form of multiple rounds of optimization has been pioneered in game
level generation and specifically to generate dungeons. A first instance was introduced by
Liapis [67] where the dungeon was first represented as a low-resolution grid of a few
segments and then as a high-resolution grid of tiles (with a grid of tiles allocated per segment).
Representation on the low-resolution grid is as a matrix of integers: each integer can be
impassable (thus disabling connections between adjacent grids) or describe the types of
contents and patters that should be in that segment (e.g. high challenge, moderate reward,
empty, etc.). This low-resolution grid is evolved through 2-point crossover and a mutation
that changes the type of segment. Once the low-resolution grid is produced, each segment is
evolved separately based on its connections with adjacent segments (which determines the
walls and connection tiles at the edge of the segment, which are not evolved but impact the
constraints and evaluation of the segment) and the high-level segment type. For instance, a
“moderate challenge” tile has between 3 to 5 monster tiles and between 1 to 2 treasure tiles,
and the evaluation of its quality follows a different fitness function than e.g. a “moderate
reward” segment. Each segment is initialized and evolved in a separate population, and the
fittest outcome per segment is used to instantiate the high-resolution dungeon. A similar
approach is taken by the Evolutionary Dungeon Designer [18] (described in Section 2.1.3)
where the designer specifies the size and connections of rooms while the evolutionary
algorithm optimizes –often in tandem with the designer– each room. It should be noted that
the Evolutionary Dungeon Designer operates on a dual representation and makes both
visualizations available to a human designer, but AI optimization takes place only on the
second, detailed representation. Figure 7 shows both levels of representations for a level.

Although not explicitly using evolutionary computation for optimization on both (or even in
any) of the representations, it is worth noting here that design problems are often

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 28

represented as both a connectivity graph and as a floorplan, similar to the ones described
above. The Graph2Plan algorithm uses a connectivity graph of rooms to create pixel-based
images of floor layouts and is described in Section 2.1.5. The work of Doulgerakis [32] uses a
connectivity matrix and evolves the floor layout based on genetic programming and is
described in Section 2.1.6. The work of Karavolos et al. [25] evolves the connectivity graph
itself and relies on constraint satisfaction to generate the level layout; this is described in
Section 2.1.3. Besides graph-to-layout transformations, ArchiGAN [38] uses mul- tiple (three
or more) representations and applies deep learning to transform one representation into the
other; this is described in detail in Section 2.1.5.

▪ 2.1.10 Ad-hoc Representations

Certain representations are so problem-specific that they can not be categorized under the
broad terms used previously. Such representations are usually tailored to a design problem
that has a strictly defined possibility space.

An indicative example is the Interlace, a large residential project in Singapore [68] consisting
of rectangular apartment blocks stacked in an interlocking brick pattern, with voids between
blocks. Each stack of blocks is rotated around a set of vertical axes, thereby creating a complex
interlock- ing configuration. In an experiment for automated optimization of the layout of
Interlace [69], the representation followed a decision chain where the first block’s placement
impacted the next blocks’ placement etc. The blocks had specific ways in which they could be
placed due to the design of Interlace, based on the “joints” where blocks were interlocking
and based on 12 permitted angles of placement. In this fashion, the representation was a
simple array of real-valued numbers which was mutated and recombined as per normal
numerical optimization problems.

Another example where the designer hard-codes their specific requirements into the
representation of the genotype is presented by Gero et al. [70]. In this case, a 4-floor building
with identical floors and pre-made exterior and interior walls is used. The genotype is an array
of integers mapping to different types of offices, and it is mapped onto the phenotype by
placing these offices along a predetermined path that iterates through each location on the
4-floor building in a zig-zag pattern (also zig-zagging between floors). In this case, the
phenotype is evaluated based on proximity of distances between offices and activity
interactions between offices, which is calculated based on the actual physical space.
However, the indirect encoding used for the genotype is based on the order that the designer
has determined that the spaces would be filled in. Any minor change (such as a wall partition
being removed) would impact the ad-hoc zig-zag pattern and the genotype would create a
very different phenotype; in that case, evolution would have to be carried out from scratch.

Ad-hoc representations for the genotype can also be based on the specifics of the tool used
for optimization. Since tools for Computer-Aided Design nowadays come with evolutionary
optimization plugins (e.g. Galapagos for Rhino), it is often simpler to use the internal variables
used by the tool to describe the design as the genotype. Doe and Aitchison, for example, use
seven parameters from Grasshoper’s sliders for a specific design problem created by the
authors and optimize the values of these parameters via the Octopus plugin for Rhino. These
seven parameters (with predefined, custom value ranges) defined various translations and
rotations of two types of pre-authored habitation modules, and the possible configurations
they could encode was up to 768. This very constrained representation, which is opaque for
any user except the developer of this design formulation, was sufficient for the goals of the

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 29

task at hand but could not be generalized or translated for larger or different problems (such
as another type of habitation module).

o 2.2 PrismArch applications
As discussed in Section 2.1.1, there is a difference between the problem space (i.e. what
problem we are trying to address, and what constitutes a valid solution) and the –algorithmic–
solution space. In theory, the problem space is defined a priori and influences the algorithmic
design. In architectural design, however, often the problem space itself is defined through
multiple iterations of analysis, synthesis and evaluation [12]. Given this fluidity where design
and problem specification often proceed in parallel [13] throughout a design process, the
algorithmic representation should also be flexible, accommodating and adapting to the
human designers’ input. At the same time, the algorithmic representation should be as
“expressive” as possible [71], being able to represent a large variety of topological
arrangements and geometrical forms, in a relatively compressed manner.

Based on the survey of methods for encoding and evolving genotypes that can represent
architectural or related designs, there is a broad variety of formats with some caveats in terms
of how controllable they can be in terms of evolutionary operators and in terms of epistasis.
Epistasis describes the “situation where one gene pair masks or modifies the expression of
another gene pair” [72] and can impact the performance of evolutionary computation as
small changes in one gene may impact the general structure of the phenotype. This is
especially concerning in a creativity support tool where suggestions should be close to the
user’s own designs, since a small change in the genotype could cause very different designs.
Moreover, the designer should ideally be able to control aspects of the design even during
evolution, such as “freezing” a room in an evolving floorplan so that it does not change
further. To achieve this, direct representations are more amenable to low epistasis and
tighter control over the genotype by e.g. blocking the mutation of certain genes. On the other
hand, most of the direct representation formats surveyed focus on grid-based layouts which
can be somewhat constraining in terms of the types of design patterns that can emerge. Grid-
based, partition-based and rectangular representations are ubiquitous in both commercial
computer-aided design (CAD) software and in optimization methods, but they are restrictive
in terms of the types of designs they can present to a designer.

For the purposes of the AI generation of suggestions for a human designer, therefore,
PrismArch attempts to bridge the gap between a controllable, direct encoding in the
genotype, and a more expressive representation that does not limit itself to “boxy” designs.
Therefore, the artefacts generated by the system are in the form of Voronoi diagrams, but
with additional elements beyond the function that each cell is assigned to. The benefit of
Voronoi diagrams is in their flexibility, as they can represent rectangular and polygonal
regions, as well as capture curves along walls. By choosing an ad-hoc position for the Voronoi
centers, a rectangular grid representation can still be achieved; additional grid
representations such as a hexagonal grid are also possible with the same format. If evolution
is not allowed to modify the positions of these Voronoi centers, then the evolutionary
algorithm can create the familiar rectangular layouts, if a designer wishes. However, if the
evolutionary algorithm also controls the coordinates of the Voronoi centers, many different
forms are possible; the preference towards specific forms (indicatively, curves or straight
angles) can be encoded as soft constraints or as aesthetic dimensions (see Section 4 for more
details). If the designer wants to constrain the representation to e.g. rectangular grids then

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 30

that can be achieved by simply turning off the mutation of Voronoi centers. Additional interim
mappings are possible, e.g. starting from a rectangular grid but allowing evolution to slightly
change it, or setting specific portions of the floorplan as amenable to evolutionary mutation
and others as “frozen” [73].

▪ 2.2.1 Problem representation

In the context of AI assistive design for PrismArch, we can define the problem representation
as an abstract description of the solution that captures a number of topological characteristics
such as, for example, connections between specific rooms, as well as a number of other
important features, such as the target surface area of each space unit, but without specifically
describing how those features are to be attained. Alternatively, the problem representation
can be viewed as a set of hard constraints which differentiate solutions into feasible (the ones
that satisfy them) or infeasible (the ones that do not satisfy them). By incorporating this
approach, we consider that designers themselves should define the problem and negotiate it
with a potential client, by analyzing the problem definition itself or potential concrete
solutions that it produces.

The problem representation could be captured by a large number of possible specifications
and constraints. Indicatively, the definition of a list of space units and their prescribed
connections could be one of the main ingredients. Furthermore, a number of more detailed
prescriptions could be included, such as the area and elevation per space unit. Finally,
geometrical constraints such as a specific boundary or other site-related characteristics may
also be important to take into account.

▪ 2.2.2 Solution representation

As shown in Figure 9, the representation operates on a hierarchical fashion with three layers
currently envisioned: 1) the Voronoi tessellation of a 2D plane, 2) the utilization of specific
cells by specific rooms and 3) the “details”, such as placing doors, windows etc.

The genotype contains one gene per Voronoi cell. Since mutation can add or remove Voronoi
cells (see Section 2.2.3) except in special cases such as rectangular or hex grids, the
chromosome can thus have variable length. Each gene (Voronoi point) contains the 2D or 3D
coordinates of the point (in case of multi-floor layouts), an integer that determines its space
unit, and additional identifiers in the case of openings, i.e. the type of opening (door or
window) and the cell it connects to. Additional variables will be considered as development
progresses to increase the expressivity of the solution representation.

▪ 2.2.3 Generation and mutation operators

There are many approaches for the generation and transformation of solutions with the
chosen representation. On the one end of the spectrum, one could apply a completely
random generation and mutation which would generate results with a very small chance of
being feasible (i.e. satisfying at least the hard constraints). On the other end of the spectrum,
one can design specially crafted generation and mutation methods that guarantee feasible
solutions with the caveat of more computationally intensive processes and less variety in
results. Our chosen approach lies somewhere in the middle of those edge cases, as an attempt
to get the best of both.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 31

The generation process starts by subdividing the space via a random voronoi diagram, then
utilizes the diagram’s cells (assigns them with a specific function) while considering some
connectivity constraints and finally adds details such as placing doors and windows. The
mutation process is a bit more complex. It operates in a hierarchical fashion and can occur in
one of three ways: mutating the voronoi points (which may affect the cells’ utilization and
placement of doors and windows), mutating the cells’ utilization (which may affect the
placement of doors and windows) or affecting the placement of doors and windows (which
does not affect anything else). Both the generation and the mutation processes do not
guarantee feasible solutions. The discovery of feasible solutions is endured through the
broader operation of the evolutionary algorithm.

Finally, the evaluation of the evolving content (represented as a Voronoi diagram) as well as
aspects of the genetic operators and initialization strategies, are dependent on an interim
connectivity graph or adjacency matrix. As noted in Section 2.1.3 and expanded upon in
Section 3.1, connectivity graphs are vital simplifications of the design problem and have often
been used to assess the quality of floorplans in terms of proximity and doorways between
rooms. As noted in Section 2.1.9, usually such connectivity graphs are provided by the client
and are not open to negotiation; this is the assumption for the current prototype of
PrismArch’s AI algorithms. However, the graph itself could be evolved as discussed in Section
2.1.3 as a step prior to the Voronoi tessellation. Some constraints on what could be evolved
and the ability for human control over aspects of the graph (e.g. not allowing the removal of
certain nodes/rooms or edges/connections) would be necessary in this case. These
constraints can easily be encoded in the genetic operators, for instance by blocking remove
node or change mutations for nodes marked as “frozen” [73].

▪ 2.2.4 Representation and user interaction

This section presents several ways that a designer could become more involved in the design
process, apart from describing the problem and the algorithm settings and receiving the
results at the end.

Direct interaction with the solution representation: There are several ways in which the user
may directly interact with the solution representation, in the context of the QD assistive
system. First of all, they may generate their own solutions without even utilizing the
evolutionary algorithm at all. Alternatively, they may choose to directly modify an existing
solution generated by the system. While generating or modifying solutions, a designer can
receive all the available “analytics” (as described in sections 3.2 and 4.2) during their design
process and thus make more informed decisions or observations about their designs.
Furthermore, user-generated designs can be used as the initial population of the evolutionary
algorithm, thus providing a potentially better starting point for evolution instead of randomly
generated solutions.

Alternatively, a designer may interfere with the generative process by imposing specific
restrictions on what parts of the solution representation the algorithm can modify. Examples
of this type of intervention are the following: 1) A designer may choose to “freeze” the initial
arrangement of Voronoi points. This way they may restrict the search in, for example,
rectangular or hexagonal geometries. 2) A designer may choose to “freeze” specific parts of
the solution such as the arrangement of a specific room or set of rooms. This way, the
algorithm will keep discovering variations of the rest of the design, while leaving intact the
part that the designer considers to be of value.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 32

Finally, the designer may even revisit the problem definition, after having examined a set of
solutions. Slightly changing the problem definition can either be treated as part of a
completely new process of search or, alternatively, as part of a continuous process of search
that does not discard the previously generated solutions, despite the fact that they were
generated through different feasibility criteria. Changing the problem definition is likely to
cause infeasibilities in the existing set of solutions, however the evolutionary process (through
mutation and selection) should be able to gradually correct the solutions, based on the new
constraints.

Indirect interaction with the solution representation: Apart from a direct involvement of the
user with the design process, his interaction may also be indirect. In this case the user does
not actively alter or constrain the solution space, but is guiding the evolutionary process
through their preferences.

The first way of doing so, is through interactive evolution [50]. In this case, the user is
presented with a set of possible solutions and asked to choose the ones that they prefer. Their
choice may be based on any type of subjective criterion, or take into account the analytics
and measurements that the system provides for each one of them. As soon as the user selects
a subset of solutions, they are treated as the initial population for the generation of the next
set. This way, the user’s preference is directly treated as a form of fitness function, in the
algorithm’s operation.

In line with the work planned in WP2, the most ambitious and general way in which the
designer can indirectly control the solution representation is through a designer model. The
user’s preferences may be captured in the form of a designer model [2], via supervised
machine learning (or, potentially, unsupervised learning when clustering groups of designers).
After such models have been generated, they can be utilized as fitnesses, constraints, or
custom representations [158] for the evolutionary algorithm that adjust various qualities of
the generated content towards a specific style, or set of preferences that mimic the style of a
designer persona.

▪ 2.2.5 Data Collection during User Interactions

Apart from the intrinsic aspects of the Quality Diversity assistive system, the algorithm will
also exist within a specific context of operation, where human designers interact with it,
controlling some or all of its parameters and interfering with its operation in various ways.

The data-records of this human-AI interaction will form the basis for the generation of
designer models which can represent (predict, reproduce) the behaviour and/or preferences
of the designers that have used the system for a period of time. Data collection will have to
adhere to the overall data organization of the PrismArch application, respecting issues of
intellectual property and providing access to the data only to their respective owners. Any
potential aggregation of data in the form of analytics or in the context of designer modeling
that may depend on data of mixed ownership will have to be agreed upon between the
respective owners.

As described in Section 2.2.4, there are several ways in which the designer can interact with
the solution space and specifications, which also influences the type of data that can be
collected regarding this interaction.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 33

At its most basic, data collection will be in the form of timestamped events that describe
instances of actions of specific subjects within the design space. In other words, every event
describes “who did what, when”.

For example, if a user is directly creating an asset through the design interface of PrismArch,
the system may be automatically collecting all of the actions that a designer takes while
designing a “solution” from scratch. Depending on the context of use, it is possible that this
approach can generate an unnecessary amount of data. In this case, the data collection can
occur in predefined time-intervals, so as to reduce their volume but still retain a compressed
(lossy) overview of the design process. This mode of data collection could be then used in
order to train neural networks that can “mimic” the designer’s behavior, i.e. design in a style
that resembles that of a specific designer or a set of different designers.

In the second mode of interaction, instead of the hands-on design activity, the recorded data
should include the designer’s preferences. In other words, the data collection could keep
track of which solutions (out of a larger set of solutions) the designer found to be preferable.
This mode of data collection could be used in order to model a specific designer’s
“preference”, i.e. a model that can predict the selections that a specific designer would make.
As soon as such a model is trained, it can then be “embedded” in the algorithm’s operation,
effectively generating a hybrid AI that mimics some aspects of human preferences.

o 2.3 Software, Tools and Algorithms
Table 1: Software that could be used within the scope of problem and solution

representation within PrismArch

Name License Description Possible use

Voro++: A Three-
dimensional Voronoi
Library in C++

http://math.lbl.gov/voro+
+/about.html

modified BSD
license, that
makes it free for
any purpose

An open source software library for the
computation of the 3D Voronoi
diagram, a widely-used tessellation that
has applications in many scientific
fields.

State representation of the
underlying spatial structure
of architectural designs.

Triangle: A Two-
Dimensional Quality Mesh
Generator and Delaunay
Triangulator

https://www.cs.cmu.edu/
~quake/triangle.html

copyrighted by
the author; may
not be sold or
included in
commercial
products
without a
license

Triangle generates exact Delaunay
triangulations, constrained Delaunay
triangulations, conforming Delaunay
triangulations, Voronoi diagrams, and
high-quality triangular meshes. The
latter can be generated with no small
or large angles, and are thus suitable
for finite element analysis.

State representation of the
underlying spatial structure
of architectural designs.

Triangle.Net: a C# port of
Jonathan Shewchuk’s
Triangle software

https://github.com/Geri-
Borbas/Triangle.NET

MIT License
C# port of Jonathan Shewchuk’s
Triangle software

State representation of the
underlying spatial structure
of architectural designs.

SharpNEAT: Evolution of
Neural Networks MIT License

Neuroevolution of Augmenting
Topologies (NEAT) is an evolutionary
algorithm devised by Kenneth O.
Stanley. Sharp-NEAT is a complete

CPPNs evolved with NEAT
as (part of the) state
representation of 2D/3D
structures.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 34

https://github.com/colgre
en/sharpneat/blob/maste
r

implementation of NEAT written in C# /
.NET created by Colin Green.

sferes2:

https://github.com/sferes
2/sferes2

MIT License

Sferes2 is a high-performance, multi-
core, lightweight, generic C++
framework for evolutionary
computation. It is intently kept small to
stay reliable and understandable.

May be used as an engine
for performing
evolutionary computation,
novelty search, quality
diversity search in the
context of generative
design.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 35

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 36

▪ 3 FUNCTION EVALUATIONS AND CONSTRAINTS

Evolutionary computation or other optimization techniques have been used by practically
every engineering principle. In the context of PrismArch we are particularly interested in the
engineering some principles that are related to the design of buildings and even more so
those who are directly affecting the building’s form. We select two engineering principles
which we find to be the most interesting in that sense: structural engineering and
sustainability. Structural engineering is a very important aspect of architectural design which
is absolutely necessary. Above everything else it defines the minimum criteria (constraints)
for the safety of the structure against potential earthquakes, strong winds and other factors
and, consequently, the security of the buildings’ inhabitants.

From these two engineering principles, we focus mostly on their scientific aspect, i.e. the way
that they can be used to evaluate the quality of a specific architectural design, in the terms
that they pose. For structural engineering, this would be whether a proposed structure fulfils
some minimal quality criteria (constraints) and then to what degree it does so in an optimal
manner. For sustainable design, the criteria are usually multi-objective and the problem is
usually how to balance the values of different qualities by exploring the design space.

o 3.1 Survey
This section presents an overview of how certain problems that relate to architectural design
have been addressed by AI methodologies. Section 3.1.1 presents the types of constraints
and function metrics that have been taken into account in systems of automated architectural
design. Section 3.1.2 focuses on the perspective of structural engineering and its relation with
architectural design. A number of indicative case studies are presented, showcasing how
structural engineering can form a synergistic relationship with architectural design through
the use of computational approaches such as evolutionary computation and parametric
design models. Finally, section 3.1.3 presents how the field of sustainability design has
explored the relation between multi-objective optimization of sustainability - related metrics
with the buildings’ form, ranging from examples that only affect the buildings’ facades, to
examples that are optimizing the complete form of a building.

▪ 3.1.1 Inherent constraints and function of architectural design

Architectural design is a complex problem that has intricate interconnections with
engineering, economical and social problems and approaches. Apart from its
interconnections with “external” perspectives, however, the practice of architectural design
also poses its own, inherent, functional constraints and evaluation criteria that are mainly
related to the organization of space in regard to its planned utilization by humans. Such
constraints and evaluations are usually addressed in the early stages of the design process,
where the architects have more freedom to investigate variations of a design. The following
paragraphs describe several approaches where such constraints and functional metrics have
been utilized in automated generation. Those studies can help us to first distinguish a number
of constraints and functions and second to examine how they have been utilized in the
context of computational optimization.

As reported in the work of Rodrigues et al. [77], the problem of automated architectural plan
generation has been addressed computationally by many studies ever since the 1990s. Those
studies use a variety of AI algorithms and computational methods for addressing the problem,

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 37

including genetic algorithms (GA), genetic programming (GP), see also Section 2.1.6),
evolutionary strategies (ES), simulated annealing, sequential quadratic programming, L-
systems, Voronoi diagrams, Dijkstra’s algorithm and stochastic hill climbing. The addressed
dimensions of optimization include geometrical and topological constraints and features,
heating, cooling and lighting - related metrics, as well as walk distance minimization. Finally,
the considered design variables include wall dimensions, interior and exterior doors,
windows, space units, floor levels, equipment/furniture, building boundaries, adjacent
buildings, openings orientation and spaces’ adjacency. As the authors mention, most of the
published work until their investigation focuses on a rather small subset of variables so as to
minimize the problem’s complexity.

In one of the early related studies, in 1994, Charman [78] treats architectural floor plan design
as “an activity of determining subspaces of a given space according to defined or implicitly
understood requirements and conflicting criteria” (as previously proposed in [79]). Charman
[78] also explains that from a mathematical point of view, a floor plan problem can be
expressed as a system of non-linear constraints on continuous domains, whose formal
analysis is very complex. He proposes a methodology which treats the problem as a Spatial
Constraint Solving Problem and uses a continuous representation (in contrast to discrete
representations, such as grid subdivisions) for defining the shape and location of rooms. In
the way that he formulates the problem, there are two types of constraints: First, implicit
constraints, i.e. constraints that are present in all floor-plan problems and second explicit
constraints, i.e. constraints that correspond to the specifications of the problem at hand.
Implicit constraints include, for example, the fact that rooms must not overlap and that rooms
must be inside the assigned plan area. Explicit constraints, on the other hand, correspond to
the specifications of the problem at hand. Those include, for example, the dimensions of the
rooms or the adjacencies between rooms. Such constraints are supposed to be defined by the
user/designer, although from an implementation point of view there is no difference between
explicit and implicit constraints. Despite the fact that this example has some limitations (for
example the shape of every room must be a rectangle), it proposes a concrete methodological
approach which is very similar to what we can find in much more recent works.

Medjdoub and Yannou [80] propose a computational methodology for the problem of
architectural layout planning that mainly focuses on constraint solving. Similar to [78], they
make a distinction between implicit and specification constraints. In their approach, implicit
constraints are mainly utilized to reduce the combinatorial complexity of the problem (for
example by restricting it to orthogonal geometries). Specification constraints, on the other
hand, belong to the “functional diagram” and are explicitly declared by the architect. The
latter include geometrical and topological constraints: Geometrical constraints relate to the
surface area, length or width, ratio, or spatial orientation of rooms (for example Fig. 10), while
topological constraints relate to the adjacency between pairs of rooms, adjacency between
rooms and the perimeter, non-adjacency or proximity (for example Fig. 10). They point out
that the latter distinction has a clear analogy to the way in which architects approach the
design process: starting from sketches whose aim is to reach an optimal topology and then
moving on to the specification of a more precise geometrical implementation. Interestingly,
as they also point out, a preliminary optimization at the topological level (before dealing with
geometrical constraints) is of particular value as the number of different topological solutions
is relatively small. Consequently an architect can even have a complete overview of the space
of topological possibilities for a given problem and thus make more informed decisions.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 38

Finally, their software solution, ARCHiPLAN, allows a designer to define their own topological
and geometrical constraints to explore the space of possibilities of their design problem. Their
software can be used to design architectural layouts in orthogonal spaces, although they point
out that it should be extended to less restricted geometries.

Figure 10: Example illustrations from the work of Medjdoub and Yannou [80]. Left:

Functional diagram of a house with two floors. Right: Some geometrical solutions of the
house on left. Source: [80]

Figure 11: Example illustrations from the work of Wong and Chan [76] which focuses on the

topological optimization of architectural plans. Left: Directed graph representation
illustrated. Right: Dual graph (dotted lines and triangular nodes) construction from the solid

line graph. Source: [76]

Wong and Chan [76], in 2009, present a methodological approach to architectural layout
planning which follows roughly the same principles as [80] but especially focuses on the
topological representation of layouts and the optimization that can be applied to it before
even moving on to the geometrical implementation. They propose the use of adjacency
matrices (Fig. 11) as an efficient representation of connectivity graphs which is compact,
human-understandable and easy to manipulate in the context of evolutionary computation

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 39

(i.e. it is quite straightforward to apply mutation operations on the matrices, or crossover
operations between them). At the level of constraints, their methodology is based on a very
important aspects of graphs: the distinction between planar and non-planar graphs, i.e.
graphs that can be projected in the geometrical space without overlapping edges and graphs
that cannot. This distinction poses a hard constraint that can eliminate infeasible solutions.
Planar graphs can be further analyzed and evaluated, based on their set of dual graphs, that
describe the boundaries between spaces, instead of their connectivity (see Fig. 11). The
feasible topological solutions are then optimized according to the degree to which they satisfy
the client’s preferences. More specifically, they propose that a large proportion of the client’s
preferences can be translated into “adjacency preferences” which can be then utilized directly
as evaluations of generated solutions. Other factors, like the available budget and other
design constraints are also taken into account.

Figure 12: Example illustrations from the work of Bahrehmand et al. [81] on optimizing

architectural plan layouts based on user preferences. Top left: a screenshot of nine layouts of
first generation. Top right: a screenshot of nine layouts of 86th generation. Bottom: Five

layouts that were rated by user in different generations. Source: [81]

Bahrehmand et al. [81], in 2017, propose a hybrid approach for the generation and
optimization of architectural layouts that takes into account a number of constraints,
functional evaluations and designer preferences. They use a state representation which
consists of space units (which may refer to rooms or other types of spaces) whose shape is
not restricted to rectangular polygons. On the contrary, they allow for those regions to be of
any type of irregular polygons, which can be deformed throughout the optimization process,
thus allowing for a much larger diversity of possible solutions (as shown in Fig. 12). The user’s
preferences are considered directly, during the optimization process. More precisely, they
implement a system of interactive evolution, where the user can both select and intervene
(modify) the available set of solutions at each step. Their methodology considers several

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 40

constraints: First, they consider geometrical constraints that a designer may impose on the
solution. Those may be specific requirements about the shape of the whole building or parts
of it, or they may relate to the building’s surroundings which form specific geometrical
boundaries. Second, they consider connectivity constraints, mainly by making sure that there
are no disconnected rooms, i.e. that all rooms are reachable. Third, opening constraints
consider all types of openings, such as doors, windows and main entrances and compare them
against the user specifications. Apart from these hard constraints, they also use several
functional metrics, in the form of soft constraints, which may be used for the optimization of
the produced solutions. First, the “overflow quality function” is a metric that assesses the
degree to which various boundaries are respected by the solution. Second, the “topological
quality function” is a metric that evaluates the adjacencies of rooms, according to a
predefined adjacency matrix. Third, several “spatial quality metrics”, including circulation,
privacy and compactness. Overall, their proposed methodology especially prioritizes the
designer’s involvement in the optimization process.

As the related work suggests, the functional aspects of architectural design form a complex
and open-ended problem. They include a large number of constraints and functional
evaluations that an architect usually takes into account. Those constraints and qualities are
expressed in either the topological or the geometrical representation of architectural
solutions. In contrast to purely engineering perspectives (such as structural engineering and
sustainability design), however, many of the functional aspects of architectural design include
some degree of subjectivity. For example, in [76], the optimization of connectivity graphs is
evaluated against a preference graph that represents the client’s subjective preferences or
demands. In [81], on the other hand, the designer’s preferences or expertise are directly
utilized in an interactive evolution approach [50]; purely analytical metrics are there mostly
to inform the designer, rather than as absolute quality criteria. Nevertheless, as becomes
clear in examples such as [81], the exploration of the design space in relation to inherent
constraints and even subjective metrics can be enhanced by computational methods.

▪ 3.1.2 Structural Engineering

Structural engineering is inextricably linked with architectural design. At the very least, the
structural design of a building guarantees its integrity against various static and dynamic
forces, such as load bearing, earthquakes and strong winds. Structural optimization is
approached via a number of constraints and metrics. The constraints relate to the minimal
requirements for a structure to be considered safe. The optimization metrics relate to the
minimization of cost, expressed through the quantity and quality of the used material, versus
the maximization of structural integrity. The “medium” through which the structural integrity
is “negotiated” against the cost is, of course, the design space of structural problems. This is
expressed through a topological and a geometrical perspective and is of large interest within
the context of PrismArch, as a building’s structural design is also coupled with other
perspectives including, but not limited to, architecture. The relationship between
architectural design and structural engineering is addressed in various ways in practice and,
as reported in [82], it often leads to conflicts. However, parametric models and optimization
algorithms can be a medium for a better negotiation of the constraints and qualities of the
two approaches. The following paragraphs offer examples of optimization studies so as to
explain the nature of the problem, as it is expressed through specific constraints, metrics and
approaches, both within the field of structural engineering as well as on the verge between
structural engineering and architectural design. As explained in the detailed survey of Kicinger

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 41

et al. [83], structural problems have been addressed through evolutionary computation ever
since the mid-seventies and early eighties (e.g. [84, 85]). Structural optimization problems can
be divided in the following three categories (Fig. 13):

▪ Topological Optimum Design is usually applied in the conceptual design stage and
includes methods of searching for an optimal material layout of a structural system.
TOD problems, being quite complex in nature, have been most successfully
approached using heuristic methods, including simulated annealing [86] and EAs [87,
88, 89].

▪ Shape Optimization is usually applied during the embodiment design stage and
includes methods of searching for the optimal contour, or shape, of a structural
system whose topology is fixed.

▪ Sizing Optimization encompasses searching for optimal cross-sections, or dimensions,
of elements of a structural system whose topology and shape are fixed and is applied
during the detailed design stage. Such problems are usually addressed successfully
using formal methods, such as Mathematical programming [90] and optimality criteria
methods [91].

Figure 13: Topology, shape, and sizing optimization for continuous (a) and discrete (b)

structural design problems. Left Topology, shape, and sizing optimization for continuum
structural design problems. Right: Topology, shape, and sizing optimization for discrete

structural design problems. Source: [83]

Out of those categories, Topological Optimum Design and Shape Optimization are probably
the most relevant, as they are addressed in the earlier stages of design, where the largest part
of “negotiation” between different disciplines takes place. The following paragraphs present
examples of how computational methods have been used to address structural optimization
of various problems, ranging from purely technical ones to others that are much more
interconnected with architectural design.

Most of the early examples of evolutionary structural optimization are focusing on problems
of relatively small complexity. However, such examples are still useful as they expose the
methodological approaches in relatively simple terms. For example Chapman et al. [89], in
1994, use a genetic algorithm for optimizing the topology design of cantilevered plates
(which, as reported in [61], is a classic benchmark for optimization in structural engineering).
They use a binary representation which corresponds to a discretized 2D plane whose cells are
either void or filled with structural material. The fitness function they use (the degree of
stiffness divided by the plate’s weight) allows them to promote “structures which best

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 42

combine light weight and load-carrying ability”. A genetic algorithm guided by that fitness
function can discover families of topologies that best satisfy the problem.

Schoenauer [61], in 1997, examined how various representations of the same problem (i.e.
the genotypic description of a cantilever plate) affect the genetic algorithm’s ability to find
optimal solutions. Schoenauer’s case studies include a bit-array representation, a Voronoi
representation and an H-representation. The three representations are tested using a classic
genetic algorithm (GA), as well as two different evolutionary strategies (ES, GP). The bit-array
representation, similarly to [89], represents a 2D grid whose cells can either be void or filled.
The Voronoi representation consists of a set of points that generate a Voronoi tessellation.
The Voronoi cells can then be void or filled. Finally, the H-representation uses a set of holes
(described as rectangles in the 2d plane) that represent the void areas (holes) of the material
plane. Results show that both the Voronoi representation and the H-representation are
outperforming the bit-array representation both in terms of computational performance and
in terms of quality of the results, with the H-representation yielding the best results overall.
The choice of algorithm (between GA, ES and GP) seems to have almost no effect on the
results, with few exceptions. The author explains that both the H-representation and the
Voronoi representation are exhibiting a high degree of epistasis (i.e. the expression on the
phenotype of one gene is influenced by other genes in the genotype). Epistasis is highest in
the case of Voronoi cells, as the influence of one site in the physical space is modulated by all
neighbour sites which, as Schoenauer [61] suggests, may be the reason for its reduced
performance. Overall, his study showcases the importance of representation for evolutionary
approaches which seems to have a stronger impact than, for example, the choice of
algorithm.

Kicinger et al. [92], in 2005, apply evolutionary computation to the problem of designing steel
structural systems of tall buildings. Their solution representation subdivides the frame into
cells, each of which can be utilized by a specific typology of bracing elements. Consequently,
the evolutionary process gradually finds optimal distributions of those modules along the
frame (fig. 10a). The researchers use a specialized software called “Inventor 2001” in order to
generate, evaluate and evolve their designs. As they report, the software offers a number of
features that could be used as fitness functions, including the total weight, the weight of
bracings, weight of beams, weight of columns and number of bracings. In their approach, they
only take the total weight into account, for a number of reasons: First, it has been traditionally
used as an indicator of quality. Second, the total weight is simultaneously a good indicator of
the design’s cost, as well as its novelty (usually novel design concepts are introduced to
reduce the weight of a structure). Finally, the use of a utility-based fitness function would
introduce bias and thus reduce the objectivity of the results. Apart from fitness, the main
constraint imposed on the generated designs was their structural integrity under a variety of
loads that resemble a realistic scenario, including “dead” and “live” loads and wind forces. As
the authors report, they chose to not over-constrain their approach by taking into account
constructability issues, as those might have stood in the way of the evolutionary process.
Additionally, the authors seem to be especially interested in the issue of novelty or creativity,
within the constraints of their problem. Although they perform a typical, single-objective
evolutionary optimization and not a specialized multi-objective or quality-diversity [6]
approach, they do take some precautionary measures so as to avoid local optima (such as
“starting from rather poor parents” [92]) and promote novelty. Their findings suggest that
evolutionary computation (which they apply through the Inventor 2001 software) “is useful

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 43

for exploring design representation space of steel skeleton structures in tall buildings, and for
searching for novel design concepts, which may gradually emerge from simpler substructures
being evolved by the system” [92].

Figure 14: Historical examples of structures by architects with strong and innovative

engineering concepts: (a) Antonio Gaudi ([93]), (b) Buckminster Fuller ([94]), (c) Felix Candela
([95]). Source: [82]

Beghini et al. [82] point out that structural topology optimization can be a link for connecting
structural engineering with architectural design. Their study points out that often the
aesthetic and philosophical requirements of architects are in conflict with the stability and
performance requirements of civil and structural engineers. However, they also present a
number of historical examples whose aesthetic qualities are particularly intertwined with
their structural function: namely Antonio Gaudi’s “Basilica de la Sagrada Familia” [93],
Buckminster Fuller’s “American Pavilion of Expo 67” [94] (also known as the Montreal
Biosphere), and Felix Candela’s “The Oceanographic” [95] (an oceanarium in Valencia, Spain),
all of which are shown in Fig. 14. These examples, of course, were the works of extremely
talented architects with a very strong structural sensibility. For example, Antonio Gaudi used
physical models as an integral part of his design process in order to calculate the sophisticated
structures that define the form and function of his intricate works. A much more recent
approach that has produced astonishing results in regard to this perspective is the use of
parametric models as a common ground between architects and engineers. The authors
present a number of case studies (for example Fig. 15) that showcase how, through the use
of parametric models, they were able to explore the design space much more efficiently,
while taking into account the buildings’ aesthetic qualities and their structural characteristics
simultaneously. They use a topology optimization method, described in [96] which allows
them to optimize the distribution of material within a specified region, by evaluating the
stiffness of the resulting structure. Their study suggests that topology optimization software
can be used as a means of communication between architects and engineers, showcasing a
variety of possible engineering solutions with ease, or even constraining the engineering
solution space with aesthetic criteria. This way, the design of form and function can become
more integrated and the exploration of the solution space can become more efficient, taking
into account both perspectives at once.

While focusing on the use of parametric models and optimization techniques as a middle
ground between form-finding and the structural engineering perspective, it would be a huge
oversight not to mention the work of the Block Research Group (BRG), at the Institute of
Technology in Architecture of ETH Zurich, led by Dr. Philippe Block and Dr. Tom Van Mele.
Their huge volume of work was initially inspired by the historical heritage of architecture
which provides us with countless examples of large structures that operate only under tension
(i.e. they are not reinforced). Some of the foundations of the group’s research have been set
in Block’s PhD dissertation [97] which proposed a novel computational methodology for

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 44

generating compression-only vaulted surfaces and networks. The methodology uses
projective geometry, duality theory and linear optimization, providing a graphical and
intuitive method, adopting the same advantages of techniques such as graphic statics, but
offering a viable extension to fully three-dimensional problems. Ever since then, as reported
in [98], the group’s expertise has expanded from compression-only problems to other
structural systems such as thin concrete shells, “bending-active” membrane structures, fabric
formwork systems, and general spatial systems of forces with applications in bridge design
and large-span roofs. One of the main areas of study of the group relates to computational
form-finding and optimization. They are the developers of the RhinoVAULT software [99], an
interactive design system in the form of a plugin for McNeel’s Rhino CAD software which
allows the designer to create and explore compression-only structures, using the Thrust-
Network-Approach. As explained in [98], their research is largely project-driven and focuses
both on computational innovations, as well as fabrication innovations, such as 3D-printing or
other techniques.

Figure 15: Case studies showcasing the use of topology optimization for large-scale problems

related to architectural design. Left: Topology optimization for design of the upper “beam”
spanning several towers for the Zendai competition. Right: Illustration for the concept design
of a 288m tall high-rise in Australia, which shows the engineering and architecture expressed

together: (a) problem statement, (b) results of the topology optimization, (c) renderings of
the design. Source: [82]

As the relevant literature suggests, there is a lot of room for interaction between the
constraints and functions of structural engineering and other aspects that relate to
architectural design, such as the aesthetic and functional aspects of a building’s form. Both
evolutionary computation (or other optimization methods) and the use of parametric models
seem to be capable of supporting this interaction, by undertaking the heavy computational
work which is necessary for the efficient search of the design space. By utilizing such systems,

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 45

architects and engineers can cooperate more efficiently and find novel solutions that better
satisfy the different points of view. Including optimization methods and parametric models in
the conceptual stage of the architectural design process would be an important tool for
architects, as it would allow them to make more informed decisions in their form-finding
approaches.

▪ 3.1.3 MEP engineering

As explained in [184], “Mechanical, electrical, plumbing and related systems (MEP systems)
have become one of the bigger contributors to the building construction costs. They are also
heavy contributors of the energy consumption in buildings” [184]. In the academic context,
MEP systems have been addressed through two lenses: The first one relates to the
coordination between different involved disciplines and the second relates to the (design)
optimization of MEP systems, in relation to measurable aspects such as energy efficiency,
sustainability and service-life . Both of those aspects are very important in the context of
PrismArch.

Coordination between MEP disciplines:
MEP coordination is an important aspect that influences the overall success and performance
of building projects [193, 194]. MEP systems are required to ensure a comfortable indoor
environment, distribute electric power and communication networks, provide potable water
and dispose of waste water [195]. Thus, the coordination of MEP systems is critical for a
successful / well-performing project [196]. As further explained in [185], a significant amount
of research has been conducted in relation to MEP coordination.

According to Hassanain et al. [185] BIM technologies have greatly helped MEP coordination
and offered a huge improvement over the traditional process of “sequential comparison
overlay process”. However, BIM technologies are not without limitations. Their main
drawback is that they mainly identify hard (physical) clashes, excluding many coordination-
related aspects such as the complexity of building systems, limited budget, limited installation
schedule, limited building space [194] and the necessary technical knowledge for the various
systems’ design, installation and maintenance [186]. In response to this observation, the
authors of [185] are proposing a coordination methodology that identifies a checklist of 63
“items” that are split in four categories: documentation coordination, operation and
maintenance coordination, within discipline coordination and cross-disciplinary coordination.
Their study reveals that “that careful consideration and communication between the
mechanical, structural and architectural design teams was paramount in achieving proper
mechanical coordination. Furthermore, it was found that constant communication between
the electrical and the other design teams was necessary, to avoid electrical design conflicts.
Finally, fire safety consideration was found to be most important in plumbing systems’
coordination”.

Other relevant studies also emphasize the importance of cross-disciplinary coordination in
MEP. For example: Yarmohammadi and Ashuri [197] studied BIM-based MEP coordination in
the USA and showcased that the experience level of the design team, the quality of
preliminary design and the complexity of MEP systems influence the quality of project
coordination. Riley and Horman [198] sought to correlate the effects of design coordination
on project uncertainty and established empirical evidence that design coordination reduces
the overall project costs. Korman [195] proposed rules and guidelines for MEP coordination
using the BIM software. Finally, Khanzode et al. [199] presented the benefits and challenges

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 46

associated with the implementation of BIM/VDC tools and processes for MEP coordination
and Khanzode [200] presented an integrated, “virtual design and construction” and Lean
method for the coordination of MEP systems.

This part of the survey showcases the recognized importance of MEP coordination, as well as
the difficulties in addressing it in a systematized, methodical way.

MEP Systems optimization:
Although, in theory, any engineering problem can be treated as a problem of optimization
(and addressed through computational methods) our literature investigation reveals that out
of the engineering fields involved in MEP, only certain aspects of HVAC systems have been
addressed through computational methods of optimization.

As far as energy efficiency is concerned, HVAC systems have been addressed as problems of
optimization in many cases. For example, they have been approached through multiobjective
optimization [187, 189] or fuzzy logic [188], or even through reinforcement learning [190,
191].

In more detail, Li et al. [187] are focusing on the multiobjective problem of maximizing the
level of thermal comfort and indoor air quality while minimizing the system energy
consumption, in a case study of interior office spaces. The computational approach that they
use in order to obtain the pareto front of the multiple objectives is the “non-dominated
particle swarm optimization”, a variation of the “particle swarm optimization” algorithm.
Apart from that, however, the authors emphasize the need for a surrogate model that can
approximate the simulation results efficiently. They use the Kriging method as a means of
learning to predict the simulation results, based on available samples and provide a fast
evaluation of the solutions in the context of the optimization algorithm.

The aforementioned methods are focusing on the control aspects of design systems.
However, HCAV performance is also related to the systems’ geometrical / topological design.
A relevant study that approaches optimization from this perspective can be found in the work
of Manuel et al. [192], where the authors apply topological optimization via “computational
fluid dynamics” simulations for the automated design of duct layouts.

MEP service life optimization:
Another aspect of optimization for MEP systems is their “service life”. As explained by Kwon
et al. [183], the maintenance of buildings’ MEP systems has been recognized as an important
issue, as the number of deteriorating buildings around the world increases.They further
suggest that the service life of building components needs to be estimated in advance and
propose a methodology that leads to proactive measures, instead of reactive which is the
usual case. They propose a hybrid approach which combines a genetic algorithm with case-
based reasoning methodologies in order to tackle a set of maintenance - related problems for
MEP components.

In [183], the authors propose a model for estimating the service life of MEP components,
based on previous data. Their model comprises of four different modules: (1) data collection,
(2) attribute selection, (3) attribute weighting, based on GA and (4) case retrieval. Their data
base includes historical data on buildings provided by the Korean Land and Housing
Corporation that were carefully processed. A set of selected attributes were then selected.
The selected attributes were weighted through a GA, in order to evaluate their “significance”
in the outcome, which is the estimation of the building’s service life quality. Their results

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 47

showed that “the developed estimation model can support more systematic building
maintenance than current approaches because the outcomes are determined based on
reliable data extracted from previous cases”. The surveyed study is a simplistic form of
machine learning, where a model is derived from data, allowing for the prediction of certain
properties of design. Another important characteristic of this approach is that it focuses on
high-level features of the MEP systems, and not on their detailed implementation. This high-
level view of the MEP system provides an interesting direction for applications in PrismArch
which are intended to be useful (at a high-level) even in early stages of design and
coordination.

▪ 3.1.4 Sustainability

Sustainable design is a field of engineering closely related to architecture where
computational methods have been widely researched for problem solving, dating back at
least thirty years from now (some of the early relevant studies can be found in [100, 101]).
The need for AI solvers arises from the complexity of the problems within this field, since
multiple (potentially conflicting) criteria must be taken into account.

As the comprehensive review of Evins [102] showcases, computational optimization methods
including direct search, evolutionary methods and other bio-inspired algorithms have been
successfully applied to various problems in the context of sustainable building design. In the
context of sustainable design, a building’s envelope is a very important part as it defines the
building’s relation to the “exterior” environment, in relation to heat, light and air. The
construction details of the building’s envelope, including its selected materials, insulation and
glazing have been addressed as an optimization problem by many studies (for example [100,
103, 104, 105, 106, 107, 108]). Most of those studies focus on the multi-objective nature of
the problem and the balancing of conflicting parameters. Other studies have attempted to
expand the search space so as to include variations of the building’s form (for example [101,
109, 110, 111, 112]), thus touching on a much broader number of problems, including
architectural, aesthetic, structural and sustainability factors at once. Another relevant design
aspect that has been addressed computationally is the specific technology of double-skin
facades of buildings (for example [113, 114, 115]). Those facades consist of two glass layers
with an air gap in between, introducing problems of control and air flow and posing a special
case of construction and form optimization. Finally, as reported in [102], there are two more
broad categories of related problems that have been addressed by optimization algorithms.
The first one relates to systems, such as the Heating, Ventilation and Air Conditioning (HVAC)
systems as well as artificial lighting and its relation to energy consumption. The second one is
energy generation systems, such as combined heat and power (CHP) systems, solar
technologies and ground energy and storage systems. These types of design problems have
also been addressed as optimization problems (for example [116, 117, 118, 119, 120]),
although mostly taking the form of the building as a given and focusing on the technical
control and design issues that are mostly unrelated to what is directly perceived by the
buildings’ inhabitants/users.

In one of the earlier relevant studies (2003), Marsh [109] describes how the problem of
shading for an element or a whole building can be approached as a geometrical problem and
addressed computationally. As he explains, taking natural light into account in the early stages
of the design process can be used as a means of making informed decisions related to form-
finding. As he also points out, taking the solar position into account manually, when designing

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 48

shading devices, can be a laborious task. He suggests that shading problems can be addressed
much more efficiently by using specialized raytracing software. His proposed methodology is
explained on a relatively simple problem of designing a shading device for a window. The
problem can be simply stated as finding the proper shape for the shading surface, so that it
guarantees that the window will remain shaded (i.e. will not receive direct sun light)
throughout a specified set of dates and times. The approach to solving this problem is rather
simple, in principle. It utilizes the ray-tracing software to generate simulations of where the
light would reach, according to date and time and then extends or reshapes the geometry in
such a way that it provides the necessary shading. As March explains, “the simple case
methodology can quickly become cumbersome when dealing with relatively complex window
shapes with many vertexes or areas of polygonal concavity” [109]. However, this
methodology serves as a very good example of the relation between form and function, in
the context of sustainability design. Furthermore, nowadays there are more specialized tools
for lighting simulation and similar problems could be addressed computationally with much
more elaborate techniques for optimization.

Figure 16: Results from the work of Kaushik and Janssen [121], showcasing the use of

sustainability criteria for the design of a building’s envelope and interior layout. Left: Study
of Pareto optimal solutions: generated variations of the shape of the building’s envelope and
the distribution of panels. Right: Study of Pareto optimal solutions: generated variations of
the distribution of panels on the building’s envelope and the interior layout. Source: [121]

In a more recent study, published in 2012, Kaushik and Janssen [121] showcase how multiple
sustainability-related metrics can be used to drive a number of aspects of architectural design.
This work uses multi-objective evolutionary optimization to automatically explore variations
of a building’s form. They strongly focus on the building’s envelope and the distribution of
panels of different materials on it, but also examine variations of its interior structure, as
shown in Figure 16. Their overall optimization strategy is defined in the following objectives:
1) Maximize the daylight factor at response points, 2) Achieve desired sun hours at response
points, 3) Minimize average U-Value of the panels, 4) Minimize overall cost of the panels and
5) Achieve desired height at each of the five internal spaces. They use the Dexen [122]
evolutionary design system in SideFX Houdini [123] while the evaluations are performed
through a specialized simulation software (Radiance). Their results showcase how a designer
can apply evolution to efficiently search a very large amount of variations and balance
conflicting objectives.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 49

Figure 17: Snapshots from the work of Choo and Jansen [75], with the problem definition

(left) and the optimized design (right). A simulation model describes a surface of
photovoltaic cells, a simple interior layout, as well as a number of sensors at the building’s

interior. Source: [75]

Choo and Janssen [75] address the problem of designing integrated photovoltaic facades for
buildings through an evolutionary optimization approach of “iterative refinement through
simulation”, proposed by Jansen and Kauchik [124]. Their work focuses on the optimization
of energy savings, which requires a balance of three conflicting sub-objectives: the
maximization of energy generation, the minimization of cooling loads, and the maximization
of daylight savings. The authors test their methodology on a relatively simple problem (shown
in Fig. 17) which they address computationally with the Galapagos Evolutionary Solver [125]
and manage to find good optimized solutions. Their method and results showcase the benefit
of applying evolutionary computation to this type of problem, in contrast to the tedious
manual exploration of design variations.

Chen et al. [74], in 2018, address the optimization of two conflicting criteria: 1) the efficiency
of a building’s cooling system and 2) optimizing the daylight access in the building. The
“conflict” between those parameters becomes more significant in the context of their case
study which is situated in a tropical zone, characterized by intense sunlight and high
temperatures. They address the problem by evolving variations of the building’s form and
envelope. Their work is a very good example of how evolutionary optimization can work
together with parametric models. More precisely, they use a parametric model which loosely
defines building topology as a trapezoidal shape with a courtyard in the middle. By changing
the model’s parameters, a large number of geometric implementations (variations) can be
produced. The model’s parameters are effectively used as the “genotype” and a multi-
objective evolutionary algorithm is searching for the best combination of those parameters,
so as to optimize the building’s cooling efficiency and daylight access simultaneously.

Figure 18: Example illustrations from the work of Wang et al. [126] on performance-based

optimization of buildings’ massing design based on horizontal and vertical subtractions.
Source: [126]

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 50

Wang et al. [126], in 2019, showcase how performance-based optimization incorporating
parametric modelling and evolutionary optimization can allow architects to leverage building
massing design to improve energy performance. Their approach focuses intensely on the
topological and geometrical variability which their system can generate. More precisely, they
use a subtractive building massing approach which allows them to generate a very large
variety of building forms (as shown in Fig. 18). Their work focuses mostly on the specific
details of their proposed representation and how they affect the ability of the algorithm to
discover novel topological formations.

▪ 3.1.5 Conclusions

The above survey showcased how many different perspectives pose functional criteria, in the
form of constraints or fitness functions, in the process of evaluating design solutions related
to architecture. The related works were purposefully chosen to frame the problem through a
lens of analysis, optimization and design automation. This way we did not only distinguish
several important functional criteria, but also examined them directly in a relevant context,
from a computational perspective.

In the case of Architectural Design (section 3.1.1) the functional criteria are mostly related to
the organization of space, from a topological and geometrical perspective. As suggested in
the relevant studies, a strong emphasis is given to the subjectivity of the relevant constraints
that depend on the client’s preferences and on the designer’s expertise and preferences.
Despite this subjective element, it appears that architectural design optimization tools can
still be very useful, as they enhance the designer’s ability to search the design space,
especially at the conceptual stages of the design process. Structural engineering (section
3.1.2) focuses mostly on the optimization of structural integrity versus cost, however there is
a lot of room for exploration of variations in relation to other factors, including a building’s
aesthetic and utilization criteria. As explained in [82], the use of evolutionary computation or
parametric models can be a very useful link for enhancing the collaboration between
structural engineers and architects. Finally, in the field of Sustainability Design (section 3.1.3)
we can detect a large amount of relevant work. Optimization techniques in that field are
widely used for addressing the hard, multi-objective problems that arise in that discipline.
Apart from the purely technical aspects of that discipline, there are also exemplary works that
showcase how the engineering aspects can be utilized in the architectural form-finding
process (for example [126, 121, 74]).

It should be noted that in the literature review there was little consideration of the
relationships between disciplines and how an automated generative system can take into
account constraints for different disciplines. We instead rely on new findings collected by AEC
partners and described in Section 3.2.1. The PrismArch application will be the first to address
these concerns through an QD assistive tool.

o 3.2 PrismArch applications
Despite the large amount of constraints and criteria that can be taken into account in the
process of architectural design, the design space of architectural problems is so vast that even
after taking into account all of the constraints and optimizations, there is still a lot of room
for exploration. As discussed in Section 2.1.1 there is usually no single best answer to an
architectural problem. Combining the analytical and processing power of computers (under
the proper algorithmic approaches) with the overview of human designers and engineers

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 51

seems to be a very promising approach of addressing architectural design, because it can
promote a more efficient search of the space of possibilities while taking into account the
architectural and engineering constraints and allowing for other functional criteria that may
be subject to a client’s requirements or a designer’s preferences.

One of the goals of PrismArch is to exemplify ways in which various engineering approaches
can share a common framework during the design process. From a computational
perspective, this goal could be addressed via a generative system that can provide useful
suggestions to a designer, by taking into account a large number of possible constraints and
functions.

As the literature suggests, there are many facets of architectural design that can be addressed
computationally. Some examples include floor plan layouts, overall building volumes, the
arrangement of elements of facades, the form and function of structural elements. Floor plan
layouts and building volumes are the problems with the highest impact factor, in the sense
that they embed a large proportion of the architectural process, at least at the initial stages
of design.

As discussed in Section 2.2, we suggest that a system of abstract generative architecture
should be first and foremost as unrestricted as possible, in terms of the topological and
geometrical characteristics of the solutions that it can generate. While the representation can
be expressive, constraints and fitness functions can control the types of results that such a
system produces. The following sections describe a number of constraints as well as functions
that can be utilized in the context of an evolutionary exploration of the design space of
specific architectural plan layouts.

▪ 3.2.1 Constraints Arising from Inter-Disciplinary Collaboration

Interdisciplinary constraints are an aspect of the design process that is especially important
in the context of large-scale design projects. The examples of evolutionary design that can be
found in the relevant literature, however, are usually focused on problems of relatively small
scale or on problems of a larger scale but from a relatively narrow perspective (within the
bounds of a single discipline). Consequently, the best way to identify these constraints was
through feedback from the AEC industry partners of PrismArch, each from their own
perspective (architecture, structural engineering, MEP engineering). This section reports on
the most important ones.

More specifically, in the questionnaire (see Section 1.3) this question was posed in two parts.
“Question 3” asks: “What are the most critical constraints that are imposed on your discipline
by other disciplines? “ and “Question 4” asks: “What are the most critical constraints from
your discipline that you feel other disciplines should respect?”. This section summarizes the
responses of PrismArch partners to those questions and attempts to capture the
interdisciplinary constraints landscape in this way.

Inter-disciplinary constraints from the perspective of architectural design:
In response to Question 3, ZHVR partners point out two critical constraints: The first one is
that the “Efficiency and responsiveness of the design process” (i.e. the design team’s ability
to turn around a design revision in a short time) is key for client satisfaction. The second one
is that “The other disciplines’ ability to highlight any potential risks and propose possible
solutions early on in the project” is crucial throughout a project.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 52

Given the non-standard nature of ZHA’s design approach and as became apparent through
discussion with ZHVR partners, we are given to understand that these constraints are to be
seen in the context of projects that involve a significant amount of risk. Diverging from the
typical and taking the risk to explore new regions of the design space (in conceptual and / or
technological terms) requires an increased amount of coordination both internally and in
relation to external factors such as the relation with the client and the cooperation with other
involved disciplines.

In response to Question 4, ZHVR partners point out three key aspects of architectural design
that should constrain the design activity of disciplines. The first one is the definition of
habitable spaces: any modification to the habitable spaces should always happen in
coordination with the architects, so as to ensure that it does not cause problems in the
experience of the end user. The second constraint is the uniqueness of the project / design
solution. ZHVR partners suggest that one way of respecting this constraint is that MEP and
structural engineers are designing within the bounds of specific envelopes, provided by the
architects. The third and final constraint is the overall “narrative that defines a project, from
its large gesture / big picture to the detail level. As ZHVR point out, there is nothing worse
than a design intervention that “damages or breaks the golden thread, or breaks the design
history”.

The constraints raised by ZHVR are essentially measures for protecting the “design intent”, as
it is the main axis of framing the end users’ experience and serving their expectations. Given
the particular nature of ZHA’s design approach, which more often than not deviates from the
typical in terms of geometry, technology and concept, all of these constraints become
especially important and intertwined with the associated risks and the dynamic nature of the
interdisciplinary cooperation.

Inter-disciplinary constraints, from the perspective of structural engineering:
AKT II partners recognize four main types of constraints that originate from other disciplines
and external factors and affect the design process for structural engineers: First, they
recognize cost as the main driver in the design process and report that structural design is
directly constrained by it. Second, they report that various types of architectural
requirements often impose geometric constraints to a solution and, as a consequence, non-
optimal structural solutions are often selected for the benefit of architectural function. Third,
they explain that MEP requirements often impact structural elements by requiring openings
that result in increasing the structural element size and cost. Finally, the physical aspects of
the site such as the ground condition, existing services etc can be a big part of the overall
constraints, influencing the structural element position or maximum loading allowed.

Furthermore, AKT II partners point out that the most important structural constraints that all
other disciplines should respect are the ones that relate to safety and structural integrity.
Namely, the site constraints, fire requirements, seismic requirements and performance
requirements. As they explain, those constraints are universally respected by all other
disciplines and the only requests that arise in the context of collaboration usually just relate
to ensuring that the building is “working as hard” as possible, i.e. that it has been optimized
so as to reduce carbon emissions, cost or construction times, within the bounds of the
aforementioned constraints.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 53

Inter-disciplinary constraints, from the perspective of MEP:
Sweco partners reported that the design process of MEP engineers is often driven by
decisions made by structural engineers and architects. Constant collaboration with the other
disciplines is considered to be very important, so as to coordinate the MEP services and save
costs from errors that may occur on the construction site. Various types of negotiations
around possible changes or tolerances may occur during the design process.

On the other hand, Sweco partners point out that other disciplines should make sure to
provide the necessary space for installation and maintenance of MEP systems. These may
include plant areas, corridor ceiling voids, apartment ceiling voids or even roof space for
installation and maintenance of units.

Inter-disciplinary constraints, conclusion:
To conclude, all AEC partners were able to recognize the fact that their design activity is
constrained by external factors (including the activity of other disciplines), as well as the fact
that their domain knowledge and responsibility introduce constraints that other disciplines
must recognize and respect. Furthermore, all disciplines recognize the importance of
effectively communicating those constraints throughout all the stages of the design process
and, in some cases, a large emphasis is placed on the initial stages of design, where a number
of important and high-level design decisions are made.

▪ 3.2.2 Project-specific constraints

In addition to the constraints arising during interdisciplinary collaboration highlighted by the
AEC partners during workshops and in their responses, there are also project-specific
constraints which are specified by the designer/expert in cooperation with the client. These
constraints are stored in a formal structure that describes certain aspects of the problem at
hand. The proposed application can operate on a large set of such constraints, each of which
can be clearly specified. The complete list is described in full detail in 2.2.1, and includes the
following constraints: 1) A list of space units that enumerates all the rooms and other spaces
that the solutions should incorporate, 2) A connectivity matrix that describes the desired
connections between pairs of space units that should be directly accessible, 3) The optimal
areas per space unit, or acceptable ranges of areas, 4) the floor / level per space unit, in case
the layout spans more than one floors, 5) the differentiation between interior and exterior
spaces, 6) the imposition of specific geometrical boundaries, 7) the proximity preference
matrix, that describes the preference for geometrical or topological proximity between rooms
and 8) the optimal surface area and orientation of windows for each space unit. As explained
in 2.2.1, some of those constraints are entirely optional, while others are integral to guide the
generation and evaluation of the evolving floorplans.

The role of all those constraints is to abstractly define the solution, by providing some of its
topological and geometrical characteristics so that the evolutionary design system can “fill in
the gaps” and generate concrete geometrical implementations that satisfy them. In other
words, they are the rules that differentiate feasible from infeasible solutions in the search
space [159]. From a technical perspective, apart from stating the constraints, one must also
declare the method for a) inspecting whether a specific solution satisfies them and b) finding
ways to gradually correct the infeasible solutions and turn them into feasible. As far as
inspecting constraint satisfaction is concerned, we have already implemented the necessary
algorithms for testing the satisfaction of most proposed constraints. Those algorithms are

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 54

manually developed to take advantage of the topological and geometrical data structures of
the solution representation. For “solving the problem” and actually generating a set of
feasible solutions, this is undertaken through specialized constrained optimization algorithms
such as the feasible-infeasible two-population family of algorithms [159,157]. These methods
simultaneously solve the problem of feasibility, while optimizing along some selected fitness
and generating a diverse population along a number of “behavioral” dimensions [160].

Finally, we should clarify that the proposed list of constraints does not necessarily need to be
utilized completely by the designer. Some of the proposed explicit constraints are absolutely
necessary for the formulation of an architectural problem (such as the list of space units, the
connectivity matrix and the optimal area constraints), while others could be treated as
options. For that reason, the QD assistive tool is developed so that it can operate even with a
partial subset of the proposed constraints.

▪ 3.2.3 Fitness functions

Within the broader practice of architecture, engineering and construction, there are countless
features that can be treated as problems of optimization. The literature survey (section 3.1)
presents a range of relevant examples, covering a historical perspective as well as the state
of the art across the disciplines of architecture, structural engineering and sustainability
design. The main purpose of this survey is to showcase the broad spectrum of applications of
design optimization, as well as to point out a number of technical aspects that need to be
taken into account.

In the context of PrismArch, we believe that it is crucial that we combine the existing
theoretical knowledge that the literature survey encapsulates with the expertise of PrismArch
partners from the AEC industries, so as to distinguish the most valuable aspects of design
optimization (in the broader context of the PrismArch application) and focus on them. During
a series of workshops relating to Quality Diversity, AEC partners distinguished the most
important aspects of design optimization (each from their own perspective/ discipline) and
formalized them in their answers through a relevant questionnaire. This section presents a
number of possible ways forward, by taking into account both the state of the art, as well as
the specific input of AEC partners.

Structural engineering:
As far as the field of structural engineering is concerned, feedback from AKT II partners via
the questionnaire and workshops (see Section 1.3) spans over two distinct aspects that relate
to construction: Structural Optimization and Fabrication optimization.

As AKT II partners explain, many types of structural optimization are included in the process
of structural engineering. Some of the most basic examples include the automated selection
of section profiles from predetermined groups of options, based on FEA analysis. Other than
that, they report that one of the most important features of optimization is the structure
weight. This is usually approached viaf parametric tools that apply simulations on the
designed geometry in order to optimize it. As they explain, optimizing (minimizing) the
structure weight subsequently optimizes cost and sustainability. On the other hand, AEC
partners report that the design process is often driven by cost appraisal. The limitations posed
by the client’s budget are used to assess the structural impact and may necessitate the review
of alternatives that combine different structural options, different grid opportunities (spacing
between structural elements) as well as their relation to architectural and MEP constraints.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 55

Fabrication optimization is another aspect of design optimization that was brought up by AKT
II partners. As they report, one way of achieving fabrication optimization is through the
regularization of discrete elements in some way. An example would be to make all of the
connections in a structure conform to a limited set of typologies, or making all of the member
lengths identical / one of a limited set of different sizes. According to AKT II partners this type
of fabrication optimization is especially important when working with non-standard
structures. Another relevant problem is to ensure the planarity of elements, so as to simplify
the forms and ensure that they can be constructed through planar sheets of material that do
not require expensive processing like hot forming.

MEP engineering:
The feedback received from the MEP partners (see Appendix A) suggests that there are
several aspects of building services that can be treated as problems of optimization.
Mentioned features include: (1) finding the best routes with less friction, (2) calculating and
properly designing spaces and clearance areas, (3) effectively arranging services in corridors
and/or risers and (4) adjusting the user interface based on the user.

From the perspective of a Quality Diversity (QD) design tool, the first feature (best routes with
less friction) seems to be the most complex one. That is because it likely relies on a quite
detailed data representation that exceeds the geometric properties of the routes and,
furthermore, the degree of domain-specific knowledge required to implement them in QD
may be beyond a realistic scope.

As far as (2) and (3) are concerned (designing spaces and clearance areas and arranging
services in corridors / risers), those aspects seem to be much better candidates for an actual
implementation in the context of QD. Both of them seem to be less detailed than (1) and the
methods for generating and/or evaluating a specific arrangement are probably easier to grasp
and implement. Consequently, these aspects could be selected as a “gateway” for integrating
MEP optimization in the context of QD and PrismArch.

Sustainability:
Through the input of all AEC partners, it became evident that sustainability is an aspect that
concerns all disciplines involved. All PrismArch partners from the AEC industry (ZHVR, AKT II,
Sweco) mention sustainability as an important aspect of the optimization process of a design
solution. PrismArch can be an ideal setting for addressing factors of sustainability in an
interdisciplinary setting. The proposed Quality Diversity generative AI system can help
towards this goal by providing the tools to perform multiobjective evolution and examine
many (potentially conflicting) aspects of optimization, at once.

Based on the relevant literature review (section 3.1.3), we found that in the field of
sustainability design, optimization problems are very often multi-objective. The main goal, in
such cases, is to find optimal solutions that manage to address a rather large number of
partially conflicting objectives. Energy efficiency is one of the main aspects of sustainable
design that have been addressed via computational optimization. An example multi-objective
problem in that context would be to maximize the insulation of a building in relation to a
warm exterior environment (so as to reduce the energy consumption of HVAC systems for
cooling), while at the same time maximizing the amount of natural light (so as to reduce the
need for artificial light) and minimizing the material and construction cost. Many of the
relevant fitness measures are tightly coupled with specific construction technologies such as,

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 56

for example, the technology of double-skin facades which, when properly designed, can offer
multiple long-term benefits in terms of energy efficiency.

Conclusion:
In general, incorporating a number of engineering functions into the evolutionary design
system will greatly increase its practical value. Thankfully, there are many tools available,
some of which are reported in Section 3.3 that may be embedded or interconnect with the
QD evolutionary loop. Such tools could be used directly within the evolutionary algorithm as
an active part of the generative process or, alternatively, as analytic reports that are received
on demand, for a smaller subset of solutions.

In any case, it would be best to focus on engineering functions that are relatively “light” from
a computational perspective, especially if they become a part of the evolutionary design
process (and not simply used as informative reports, at the end). Simulation-based
evaluations tend to be very time consuming and, if incorporated without some attention, may
cause serious side-effects in the algorithms. Furthermore, it would also be wise to select a set
of engineering functions that can be calculated based on the solution representation that is
proposed in Section 2.2. An example of a compatible engineering function would be to
evaluate the quality of a generated plan in terms of its usage of natural light. Since the
suggested representation precisely describes the layout, including the position, shape and
size of windows, natural light coverage seems feasible that it can be directly evaluated from
that perspective, using one of the available, open-source tools that we have catalogued.

On the other hand, some of the engineering perspectives rely on design aspects that are
simply missing from the proposed solution representation. Structural engineering, for
example, is calculated based on a specific technology of construction which may be a
reinforced concrete structure consisting of columns, walls and slabs, or a metal skeleton
structure. In order for generated architectural layouts to be evaluated from the perspective
of structural engineering, an intermediate layer of generating those structural solutions
should first be implemented or utilized, so that the result can then be evaluated. Overloading
the solution representation with all necessary aspects to address any type of engineering
problem would be overcomplicating the problem and lead to many negative side-effects both
on the development process and on the runtime needs of the system. Those extra layers of
information and processing can be regarded as parts of potential and specialized fitness
function calculation methods.

Overall, the engineering features that will be incorporated should be very carefully selected,
taking into account all the relevant technical issues and the way they can affect both the
technical development and the operational efficiency of the AI application. As a following step
we plan to examine the available methods and tools more closely, from that perspective, as
well as consult with AEC partners so as to make the best decisions in that regard.

o 3.3 Software, Tools and Algorithms
Table 2: Software that could be used for function evaluation and constraint satisfaction tests

within PrismArch

Name License Description Possible use

Karamba 3D Commercial,
closed source

An interactive, parametric finite
element program. It lets you analyze
the response of 3-dimensional beam

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 57

https://www.food4rhino.c
om/app/karamba3d

 and shell structures under arbitrary
loads.

Visualarq

https://www.food4rhino.c
om/app/visualarq

Commercial,
closed source

VisualARQ adds flexible BIM features to
Rhino, and speeds up the process of
modeling an architectural project in 2D
and 3D. VisualARQ provides tools to
generate all project document
information (plans, sections,
elevations) and quantification
(surfaces, dimensions, components,
quantities) from the 3D model
automatically.

Rhinovault: Funicular
Form Finding

https://www.food4rhino.c
om/app/rhinovault

Free

The Rhinoceros® Plug-In RhinoVAULT
emerged from current research on
structural form finding using the
Thrust-Network- Approach to
intuitively create and explore
compression-only structures.

Rhinomembrane v2.0

https://www.food4rhino.c
om/app/rhinomembrane-
v20

Trial

Rhino Membrane is one of the most
powerful tools for form finding of
tensile structures and yet most simple
to understand and use.

Intralattice

https://www.food4rhino.c
om/app/intralattice

Free, open
source, MIT
license

This is the beta release of Intralattice, a
plug-in for Grasshopper used to
generate solid lattice structures within
a design space.

Dodo

https://www.food4rhino.c
om/app/dodo

Free, closed
source

Dodo is a collection of tools for
machine learning, optimization, and
geometry manipulation.

Polyframe

https://www.food4rhino.c
om/app/polyframe

Free

PolyFrame is a geometry-based,
structural form-finding plugin for
Rhinoceros3d based on the principle of
the equilibrium of polyhedral frames
known as 3D/polyhedral graphic statics.

Ladybug tools

https://www.food4rhino.c
om/app/ladybug-tools

Free, AGPL-3.0+

Ladybug: Import and analyze weather
data in Grasshopper. Diagrams: Sun-
path, wind- rose, radiation-rose, etc.
Radiation analysis, shadow studies, and
view analysis.

Honeybee: connects Grasshopper3D to
validated simulation engines such as
Energy-Plus/OpenStudio and Radiance
for building energy, comfort,
daylighting and lighting simulations.

Dragonfly: creation and manipulation
of large-scale EnergyPlus and Radiance
models by capitalizing on an abstracted
2D rep- resentation of building
geometry, where all rooms are
assumed to be extrusions of floor
plates.

Butterfly: connects Grasshopper to the
OpenFOAM engine, wich can be used

Daylight simulations, wind
comfort and other types of
simulations that may be
used as function
evaluations of a generated
design.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 58

to run advanced computational fluid
dynamic (CFD) simulations.

Air conditioning and
ventilation design

https://www.food4rhino.c
om/resource/air-
conditioning-and-
ventilation-design

Free

Wind comfort prediction
with computational fluid
dynamics (by SimScale)

https://www.food4rhino.c
om/resource/wind-
comfort-prediction-
computational-fluid-
dynamics

Free Wind comfort prediction with
computational fluid dynamics (CFD)

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 59

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 60

▪ 4 DESIGN EXPLORATION DIMENSIONS

This section focuses on the design exploration dimensions which can be explored through
Quality-Diversity search. These dimensions are an important way to differentiate individual
or general stylistic choices and preferences. We use “design exploration” here in an abstract
manner, denoting properties that can differentiate a set of solutions but which are not criteria
that need to be satisfied (or maximized). We rely as much on literature related to disciplines
of architecture or engineering as on broader cognitive aspects of perception and beauty [5].

Design exploration dimensions are important to define in this Deliverable for two reasons.
First, the AI algorithms developed for PrismArch largely rely on evolutionary search towards
Quality-Diversity [6,7], which requires some variance without necessarily requiring a solution
to have more or less of a specific design dimension. Showing a broad range of diverse choices
(which are still high-quality as the AI optimizes the quality and constraint dimensions
discussed in Section 3) is more likely to inspire the designer. The second reason is that these
properties are likely to be subjective and depend on the idiosyncratic style or priorities of a
certain phase of the design; therefore they are ideally suited for computational models which
adapt to a specific designer based on prolonged interactions with the editing interface.
Therefore, creating a personalized preference model that can evaluate content specifically
towards a designer can provide generation that is stylistically appropriate without
compromising function and constraints which remain unchanged.

o 4.1 Survey
The structure of this survey follows a path from the general aspects of design, inspired by
studies in cognitive psychology and neuroscience, to the specifics of a built and livable
environment. Therefore, Section 4.1.1 provides a general overview of evaluation in related
fields such as generative art and game visuals, while Section 4.1.2 focuses on aspects of space
as identified by Christopher Alexander, and finally we focus on the human experience in
Section 4.1.3 by viewing the built environment from the perspective of the person navigating
through it.

▪ 4.1.1 General visual properties

In his book “Art and Visual Perception” [127], cognitive psychologist Rudolf Arnheim observes
the psychological impact of certain art pieces on the viewer by assuming a holistic perceptual
processing of the scene. Introducing the term perceptual forces as the psychological and
physical forces that guide the viewers’ attention at specific points and along specific axes on
an object or scene, he attempts to identify the most important contributors to the creation
of these forces: the simplest of those are balance and shape. For Arnheim, the main
contributors of balance are weight and direction: weight refers to the pull of the viewer’s
attention on specific areas and is influenced by location (with more importance given to the
image’s center and the horizontal and vertical axis), while direction guides the viewer’s
attention along specific axes. On the other hand, Arnheim approaches shape in the context
of the minimal visual cues that can accomplish identification. He attributes the perception of
shape to simplicity, subdivision, similarity and difference. Simplicity is achieved when
structural features of the shape are arranged in an easily deductible and memorable pattern;
such structural features “can be described by distance and angle” [127]. Subdivision refers to
the human ability to group visual cues in order to dissect the whole into visually distinct parts.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 61

Similarity can visually group distinct shapes or features into a single unit or pattern, while
difference is perceived as an anomaly and grabs the viewer’s attention.

From a different scientific field, neuroscientists Ramachandran and Hirstein [128] has also
suggested “speculative and arbitrary” laws of art; these eight universal laws, grounded mostly
on empirical studies of the brain, are: peak shift, isolation, grouping, contrast, perceptual
problem solving, symmetry, abhorrence of coincidence and metaphor. Ramachandran and
Hirstein identify these properties of visual perception as common in all brains and thus
resistant to cultural influences.

Principles such as balance and symmetry have been extensively used for content generation.
Ochoa [129] evolved the expansion rules for Lindenmaier systems in order to generate plant-
like structures according to five features that included the height of the structure and its
bilateral symmetry as the ratio of nodes on the left side and the right side of the structure.
Liapis et al. [130] used a similar method to measure weight in generated polygons
representing spaceships by assessing the surface ratio of the bottom half and top half of the
polygonal shape, as well as the surface ratio of the middle third of the shape along either the
vertical or horizontal axis (see Fig. 19). While these surface ratio metrics assess balance, in
the sense of weight and direction proposed by Arnheim [5], a stricter measure of symmetry
was also evaluated by Liapis et al. as the ratio of the intersecting surfaces between a polygon
and its reflection over the union of these two surfaces. Other measures of form highlighted
by Arnheim were evaluated by Liapis et al. in the form of simplicity (as the perimeter of the
polygon compared to the perimeter of an oval enclosed within the same bounding box) or
jaggedness (the ratio of angles that were between 20o and 60o or 300o and 340o over all
angles). In a related experiment, Liapis generated spaceship sprites by combining human-
authored components, and evaluated the massing (i.e. the non-transparent parts) of the pixel
images in terms of surface ratios (top half versus bottom half, middle half along X or Y axis
versus exteriors, total surface of sprite versus surface of bounding box), outline, and
connections between component sprites. Moving closer to the task of design of architectural
spaces, Alvarez et al. [131] evaluate symmetry of a tile-based level representation (see
Section 2.1.2) based on the presence of the same wall tiles in the closest of four different
reflections (including horizontal, vertical, and diagonal symmetries) of the level. While Alvarez
et al. [131] attempt to maximize symmetry, Sfikas et al. [132] explored the evaluation of two
different symmetry metrics as either a diversity measure or as a quality measure for a MAP-
Elites implementation of quality-diversity search [133]. The metrics of Sfikas et al. assessed
symmetry along the horizontal axis (see Fig. 20) or bilateral symmetry based on presence of
walls at the same positions in the original content and its reflection(s).

Figure 20: Mazes generated through MAP-Elites by Sfikas et al. [132]. Mazes to the left have

a higher horizontal symmetry (with their reflection on the X axis) than those to the right.

In evolutionary art, symmetry and order has been studied and formalized in many different
ways. In the form of mirror symmetry (i.e. perfect match between a pattern and its reflection),
Gartus and Leder [134] assessed symmetry along four axes (horizontal vertical, main and

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 62

secondary diagonal) as the ratio of matching pixels between an image and its reflection. The
four symmetry scores calculated in this way were then averaged to provide a general
symmetry score between 0 and 1; this averaging form of aggregation is unlike the study of
Sfikas et al. [132] where each symmetry was a different quality or diversity dimension, or the
study of Alvarez et al. [131] where the highest score of the four was used as a measure of
symmetry. Gartus and Leder generated black and white patterns consisting of triangular
elements using MATLAB through the stochastic optimization process of simulated annealing
[135]. These patterns were assessed by over 100 participants in terms of visual complexity,
and showed a significant negative correlation between symmetry and perceived visual
complexity. This means that viewers perceive symmetrical patterns as less complex than
asymmetrical ones (which presumably seem “noisier”). Hubner and Fillinger [136] evaluated
the mirror symmetry in pre-made patterns and users’ preference to them, although the
correlations were not as strong as with other measures of balance (discussed below).

Other measures of alignment have also been tested, such as homogeneity as the similarity of
number of black pixels in different subsections of a binarized image used by Hubner and
Fillinger [136] in the aforementioned study, and “parallelism” as the similarity of orientation
of different edges in the image [137]. Parallelism in this sense was assessed by Redies et al.
based on the detected edges of an image process algorithm on a dataset of real-world images;
a similar study on edge co-occurrence of real-world images was conducted earlier by Geisler
et al. [138].

A broader measure of balance, rather than exact symmetry, has often been used as a design
criterion and as an avenue of study for its psychological effects. Wilson and Chatterjee [139]
generated a set of black and white images with black circles or hexagons distributed around
a white canvas in order to assess how visual balance was assessed by human users and how
it affected their preference. Similar to Liapis et al. [130], Wilson and Chatterjee assessed the
generated patterns based on the ratio of pixels in each half of the image using 8 split criteria
(horizontal, vertical, main diagonal, antidiagonal, and inner/outer divisions on the horizontal,
vertical or two diagonal axes). Hubner and Fillinger [136] included a measure of balance as
the Deviation of the Center of Mass, which “represents the center of perceptual “mass” in a
picture and its deviation from the geometric center” [136].

Another important aspect highlighted by Arnheim is complexity, which has been assessed
primarily through image processing techniques in evolutionary art and visual appreciation
studies. Popular dimensions of this complexity are self-similarity (how similar the image as a
whole is to its parts), anisotropy (difference in magnitude of changes in luminance or color
across orientations in an image) and image compression (which assumes that simple images
have redundant information and predictable data which can be compressed at higher rates
than complex images). As such, complexity evaluation methods have mostly been applied to
2D images, rather than e.g. polygon representations, and more often than not these images
were real-world photographs or paintings [140]. Complexity is often assessed based on the
histogram of orientation gradients (HOG), which assesses the mean magnitude of changes in
luminance or color in an image [141], or the Fourier slope [142] which is ”an indicator of the
strength of low spatial frequencies (representing coarse detail) relative to high spatial
frequencies (representing fine detail) in the image” [143]. Machado et al. [144] use Zipf’s law-
based metrics to assess the complexity of an image as the rank frequency and the size
frequency. Zipf’s rank frequency is based on the number of occurrences of each pixel intensity
value in the image and assessing their rankings based on a simple mathematical formula.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 63

Zipf’s size frequency assesses the difference between a pixel’s value and the value of each of
its neighbor pixels, processing it in terms of ranks as with the rank frequency. Machado et al.
[144] also use alternative measures for complexity, such as a comparison in terms of pixel
differences between the original, lossless image and its JPEG-encoded or GIF-encoded
version. As noted above, the lossy conversions of JPEG and GIF would lead to more pixel
changes or would not be able to create smaller filesizes. Both the pixel differences and the
compressed files’ size was used for this assessment of complexity.

▪ 4.1.2 Aspects of Space

Beyond general aspects of style and design that permeate diverse facets of creativity such as
visual arts and photography, Christopher Alexander laid out a set of fundamental properties
in his book “The Nature of Order” [145]. Alexander uses “life” as the rhetoric vessel in this
book, but builds on the author’s 20 year experience following his own fundamental book on
“A Pattern Language: towns, buildings, construction” [146]. The key to the idea behind “The
Nature of Order” is that every part of space —every connected region of space, small or
large— has some degree of life, and that this degree of life is well-defined, objectively existing,
and measurable [145]. Alexander focuses on centers throughout this book, identifying centers
those elements which appear within the larger whole as distinct and noticeable parts. In this
context, a center can be defined only in terms of other centers, while centers are —and can
only be— made of other centers. Alexander identifies 15 properties of centers relating to
scale, strong centers, boundaries, alternative repetition, positive space, good shape, local
symmetry, contrast, echoes, void, simplicity and inner calm, not separateness. Of these
fifteen qualities, some can be more amenable to mathematical or computational formulation
than others. Alexander is deliberately poetic in his description of many of these properties,
and it was a challenge even to summarize them succinctly in the above list. However, a
number of properties can be somehow formalized. Indicatively, the strong centers can be
assessed in terms of their centrality in a connectivity graph, while moreover the presence of
multiple strong centers linked together (and intensifying each other) can be assessed with
more specialized graph algorithms such as PageRank. Alternating repetition can be naively
assessed in terms of N-grams on metrics or usage of each space (thus finding consistent
patterns). Roughness can be assessed in terms either almost but not perfect symmetry (e.g.
as a desirable symmetry ratio in the symmetry metrics or via complexity (see Section 4.1.1).

▪ 4.1.3 Architectural space heuristics

This section showcases analytical features of architectural space that relate to subjective
elements of human perception. The following paragraphs describe relevant studies that
revolve around notions of visibility and accessibility and attempt to correlate them with
human experience and behavior. The purpose of reviewing those studies is to detect metrics
which can be used in the context of quality-diversity, so as to generate different designs that
take into account the human perception of the environments that those designs describe.

Benedikt [147], in 1979, introduces a methodology for the analysis of architectural space as
an environment (rather than as an object). His study focuses on the relation between space
and visibility and proposes an analytical framework that could form the basis for connecting
those with human perception and experience. More precisely, he suggests that the human
perception of architectural space can be analysed via a geometrical construct known as
“isovist”. An isovist is simply the set of surface-points that are visible from a specific point in

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 64

space. For a given architectural plan, there are many isovists that describe how it is perceived
from different points of view (see Fig. 21). Benedikt points out that those isovists have specific
characteristics that differentiate them, including their area (the amount of space that can be
seen from a point), their real-surface perimeter (how much environmental (real) surface can
be seen from a point), occlusivity (length of the occluding radial boundary), variance or
skewness of their radials and circularity (as another measure of their complexity). While for a
given environment there is an infinite set of isovists (since space is continuous), Benedikt
suggests that its quality can be captured in a rather small subset of those. He eventually
proposes the use of “isovist fields” (see Fig. 21), as a way of transitioning from the use of
single isovists to the use of all the isovists along a specific path. Overall, his paper is an attempt
to formulate a foundational analytical methodology that uses isovist fields as a directly
measurable property of architectural environments which can then be analyzed via theories
of visual perception and spatial description, thus providing a concrete analytical evaluation of
those spaces. Despite its initial limitations, Benedikt’s methodology has posed a new
approach for the analysis of architectural space which is continuously studied and expanded
since.

Figure 21: Example illustrations from the work of Benedikt [147] on isovists and isovist fields.

Top: three isovists of an abstract architectural plan. Bottom left: Analog production
of isovists along a path by point-source illumination of a model. Bottom right: Some
examples of isovist fields for three (two-dimensional) simple environments: a free-

standing wall, the end of a long wall and a free-standing square. Source: [147]

Turner et al. [148], in 2001, extend the idea that an architectural layout can be analyzed as a
set of isovists, using a novel analytical methodology. They point out that a set of isovists can
be also represented as a connectivity graph, in which the edges represent pairs of points that
are visible to each other (see fig. 22). They show that this connectivity graph is equivalent to
the set of isovists. Furthermore, they propose three metrics for analyzing the connectivity

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 65

graph: the neighbourhood size, the clustering coefficient and the mean shortest path length.
The neighbourhood size is a map that represents the number of active connections at each
region of the analyzed space. The clustering coefficient is the total number of active
connections divided by the total number of possible connections between cells (i.e. the
number of edges the graph would have if it was fully connected). This is directly related to the
convexity of a shape. For example, a convex polygon would have a clustering coefficient of 1.
Finally, the mean shortest path length represents the average shortest path going from any
node to any other node via the visibility connections. Applying these metrics on a real example
generates a set of maps that characterize and differentiate its regions, as shown in Fig. 22.

Figure 22: Example results from the work of Turner et al. [148] on isovists and visibility

graphs. Left: An example of a first-order visibility graph, showing the pattern of connections
for a simple configuration. Right: Mies van der Rohe’s Barcelona Pavilion showing

neighbourhood size (left), visibility mean shortest path length analysis (middle), and
accessibility mean shortest path length analysis (right). Source: [148]

Stamps [149], in 2005, offers a comprehensive review of studies relating the dependent
variables of ‘spaciousness’ or ‘enclosure’ to independent variables calculated from the
mathematical construct of an ‘isovist’. As he explains, “enclosure is such an important feature
of the environment that a specific region in the brain responds directly and selectively to it”.
His analysis is based on the original formulation of isovists, which takes into account the shape
of the visible area from a vantage point and treats it as a polygon in 2D space. Based on this
formulation, the main research question of his paper is: “how well do isovist measures predict
responses of spaciousness or enclosure?”. Secondarily, he addresses the more technical
aspect of: “how many measures are really needed to describe isovists?”. His research is based
on a number of case studies that include interior spaces, such as the hotel lobbies shown in
Fig. 23, and exterior spaces. He conducts his experiments by analyzing the reported
perceptions of spaciousness or enclosure on these case studies and examines their correlation
with measurable properties of the corresponding isovists, including their horizontal size,
boundary permeability, variation in distances to boundaries, concavity, boundary
predictability and elongation, among others. As far as the main research question is
concerned, his findings show that “impressions of enclosure are strongly related not only to
actual horizontal size but also to variation in distance to boundary, to concavity, to elongation,
to nearest distance, and to boundary predictability”, which is aligned to the theory that
“judgments of enclosure are actually judgments regarding the potential for safety or danger
in a region”. As far as the secondary research question is concerned, performing a principal
component analysis showed that isovists can be effectively distinguished with two to perhaps

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 66

six properties. The most plausible properties are size and concavity, while mixed results were
obtained for the other properties.

Figure 23: Example illustrations from the work of Stamps [149], showcasing the case studies

used to conduct his research. Left: examples of isovists with high and low values of area,
solid perimeter, occluded perimeter, radial variance, and radial skew. The designs shown are
floor plans for hotel lobbies of equal floor area, after [150]. Right: perspective sketches of the
hotel lobbies shown in the left figure. Five pairs of hotel lobbies are shown. Each pair differs
in one of five isovist properties: area, solid perimeter, occluded perimeter, radial variance,

and radial skew. Source: [149]

Koutsolampros et al. [151], in 2019, used Visibility Graph Analysis (VGA) and other related
metrics so as to analyze the behavior of office workers, in the context of their working
environment. The authors focus on two aspects of behaviour (movement and interaction) and
investigate how the recorded behaviors relate to the properties of space and whether they
can be predicted by the aforementioned analytical methods. Their methodology is based on
a software tool called depthmapX [152], which offers 25 different analytical measures of
space. They are roughly divided into six groups (also shown in Fig. 25): 1) the Size group, which
includes Isovist Area, Connectivity and Isovist Perimeter, 2) the Shape group, which includes
Compactness, Point First Movement, Point Second Movement, Min Radial and Max Radial
Distance, 3) the Potential to explore group, which includes Drift Angle, Drift Magnitude and
Occlusivity, 4) the Potential to move group, which includes Through Vision and Visual
Clustering Coefficient, 5) the Control group, which includes Visual Control and Visual
Controllability, 6) the Global group, which includes Angular Mean Depth, Metric Mean
Shortest Path Angle, Metric Mean Shortest Path Distance, Metric Mean Straight Line Distance
and Visual Mean Depth, 7) the Normalized depth group, which includes Visual Integration
(including HH, P-value and Tekl) and 8) Complexity, which includes Visual Entropy and Visual
Relativised Entropy. As they point out, some of these metrics have been disproportionately
investigated in relevant research (the number of relevant citations for each one is shown in
the table of Fig. 24). The goal of this research is to find how those metrics relate to movement
and interaction of humans in office spaces, and results show that some metrics such as Visual

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 67

Mean Depth play an important role for understanding the effects of movement: more
segregated floors and spaces tend to attract less movement. The authors also find that, of the
two activities, movement is the easiest to predict, with many of the results applicable both to
large-scale analysis but also on a per-site level.

Overall, as the reviewed studies suggest, making concrete correlations between isovist
related metrics or visibility graph related metrics and specific aspects of human experience is
not an easy task. The relevant research is still ongoing and many open questions remain.
However, we believe that the utilization of some of the proposed metrics may be especially
useful for the differentiation between architectural solutions. If nothing else, isovists and
visibility graphs can be viewed as an encoding of an architectural environment that captures
its complexity from the point of view of an observer that lies within it. Utilizing this aspect in
the context of a quality diversity evolutionary can yield results where differences are much
more meaningful than if they were relying directly on the top-down projection of a plan
layout, for example.

Figure 24: Table from the work of Koutsolampros et al. [151] with the metrics provided by

depthmapX [152] and the amount of relevant citations for each of them. Source: [151]

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 68

Figure 25: Example illustrations from the work of Koutsolampros et al. [151] on “dissecting”

visibility graph analysis. Source: [151]

o 4.2 PrismArch applications
This section presents a number of possible “modes of differentiation” between design
solutions that can be used to define the dimensions of diversity in the Quality Diversity
assistive AI tool, in the context of the PrismArch application. Similarly to 3.2, the survey of the

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 69

state of the art collected from the literature (Section 4.1) is combined with the input from
AEC partners of PrismArch (data collection is described in Section 1.3).

▪ 4.2.1 Input from ZHVR:

In the dedicated workshops and the questionnaire, ZHVR emphasizes the importance of
treating a design solution as an emergent property that is an outcome of ongoing interactions
between the designers and the client. Furthermore, ZHVR points out that during the initial
stages of design, one of the most important aspects is the definition of the aspects that shape
the boundaries of the solution space. This feedback is particularly useful to the broader scope
and vision of the QD and designer modeling application as realized in PrismArch, and are
discussed in greater detail in Section 5.2.

▪ 4.2.2 Input from AKT II:

AKT II partners reported that the main characteristics that are explored during the initial
stages of the design process usually include sustainable outputs, cost and structural
performance. They point out that they use simulation software in combination with designer
experience in order to evaluate these parameters both in isolation and in combination, so as
to identify potential options to pursue in later stages. Furthermore, they report that all of the
aspects that they address are quantifiable and can be at least approximately calculated during
the initial stages of design. For example, cost can be approximated via directly measurable
material quantities such as length, area, thickness or volume. Structural performance is
calculated based on properties such as self-weight, weather and environmental loads, live
loads from people, equipment, furnishings, while also taking into account the properties of
the selected material and its structural properties. As far as sustainability is concerned, an
important factor that structural engineers are focusing on is the embodied carbon, a property
that encapsulates the carbon generated in the production, forming, transportation and
maintenance of a material. FInally, another important aspect that relates to structural
engineering is the fabrication process, especially in relation to ‘non-standard’ structures with
unusual forms, irregular shapes, etc.

Most of the reported dimensions of exploration from AKT II can also be perceived as aspects
of optimization. However, this does not prohibit a QD algorithm from using them as
dimensions of exploration. As was showcased by AEC partners, using quantifiable measures
for the exploration of design solutions is deeply integrated in the practice of structural
engineering. Therefore, an important next step is selecting a set of specific features and
integrating them in the quality diversity AI assistive tool.

▪ 4.2.3 Input from Sweco:

Sweco partners reported that during the initial stages of design they explore several aspects.
These include, for example, finding the best routes with less frictions, calculating the
necessary spaces and clearance areas, effectively arranging services in corridors and / or
risers, user interface adjustments based on the user among others.

Similar to structural engineering, several aspects of MEP engineering can influence the
dimensions of search in the context of Quality Diversity search. During upcoming
development steps the exact methodologies or algorithmic processes for evaluating the
reported aspects, in cooperation with Sweco, will be identified and integrated.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 70

▪ 4.2.4 Proposed dimensions of diversity:

Based on the literature review of section 4.1, we propose a number of dimensions of diversity
which can be investigated in the context of the Quality Diversity AI assistive tool. These
dimensions provide geometric and/or topological differentiation between design solutions
that are treated as rather “neutral” characteristics. Each one of them, in isolation, does not
necessarily serve a specific purpose or design goal. However, utilizing a set of such neutral
dimensions of diversity assists the algorithm in efficiently populating the design space (with
samples that are geometrically and topologically different) and discovering the regions of that
space where the objectives can be further maximized. Furthermore, the proposed set of
dimensions can help human designers in their creative design process, by providing them with
samples of solutions that are not slightly different from each other, but intensely and
perceivably different.

Direct geometric evaluations:
The first set of proposed dimensions of diversity includes a number of direct geometric
evaluations and is described in the following list. Of course this list can be updated or
extended, based on experimental results and / or input from AEC partners.

Plan Compactness: A feature that expresses the degree to which the whole surface of
a generated plan is “compact” or “dispersed”.
Compactness per space unit: The average of the compactness of each discrete space
unit’s surface.
Absolute Orthogonality: The degree to which the boundary lines of the generated
plan tend to be orthogonal, i.e. coinciding with either the X or Y axis of the coordinate
system.
Relative Orthogonality: The degree to which the angles between consecutive
boundary lines tend to be either square angles, or 180 degree angles (i.e. the two
consecutive lines are co-linear).
Symmetry and complexity: The notions of symmetry and complexity are two broad
aspects that have been extensively studied in the fields of evolutionary art and
computational creativity [158] as modes of differentiation between generated
artifacts. Applying such methods on generated designs is another way of abstractly
diversifying solutions.

Isovist and Visibility Graph - based evaluations:
As the relevant literature suggests (section 4.1) through the analytical approaches of isovists
and visibility graphs, a designed space can be tied to the human perception of environments.
The work of Koutsolambros et al. [151] offers a condensed overview of a broad set of relevant
methods for the analysis of architectural space. That same list is also supported by their open-
source software, depthmapX [152], which makes such metrics even more accessible. We have
selected two indicative metrics from this list, which we believe are good candidates as
behavioral dimensions of the quality-diversity search algorithm. The first one (Visual Control)
is one of the ways of associating visibility with control; the second (Visual Entropy) relates to
the complexity of “travel” (or movement). More candidate metrics are worth exploring.

▪ 4.2.5 Conclusion

This section presented a broad range of dimensions of diversity suitable for design
exploration. Some of these dimensions are directly tied to specific objectives (such as the

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 71

ones proposed by engineering partners), while others are relatively independent and their
purpose is mainly to increase diversity in a more abstract way which may be beneficial both
for the algorithm’s operation as well as for the creative/exploratory aspects of design. At this
stage it is not possible to make strong statements about which dimensions will be the most
effective or useful, because their effect has to be evaluated in their algorithmic context, as
well as in the broader context of the PrismArch application.

o 4.3 Software, Tools and Algorithms
Table 3: Software that could be used for evaluation of aesthetic dimensions in PrismArch

Name License Description Possible use

Dlib:

http://dlib.net/

Boost Software
License (open
source licensing
for use in any
application, free
of charge)

Extensive C++ toolkit containing
machine learning algorithms and tools
for creating complex software in C++ to
solve real world problems. Includes
image processing functions for feature
extraction (e.g. SURF, HOG, etc.)

Possibly useful in case we
need to apply machine
learning techniques in our
processes. For example, we
could train neural networks
to replace complex
algorithmic processes so as
to increase the
computational efficiency of
our system.

depthmapX

https://github.com/SpaceG
roupUCL/depthmapX

GPLv3
https://www.gn
u.org/licenses/g
pl-3.0.html

Multi-platform spatial network
analyses software

Performing spatial analysis
on generated architectural
plans, so as to evaluate
them along a number of
dimensions, in the context
of quality-diversity search.

Dispersive Flies
Optimization algorithm

open-source,

free

A search algorithm which was proposed
by al-Rifaie et al. [154] and then
modified by al-Rifaie et al. [153] so as
to detect arbitrary types of global or
local symmetries.

Detecting arbitrary types of
symmetry in images of
generated architectural
plans, in the context of
quality-diversity search.

Thornton Tomasetti's
Design Explorer

http://core.thorntontomas
etti.com/design-explorer/

https://tt-
acm.github.io/DesignExplo
rer/

open source,
MIT License

An open source tool for exploring
design spaces on the web. Design
Explorer is an interface that lets you
visualize and filter groups of iterations
– sets of design solutions that are both
intimately related, and potentially
scattered across a vast, high-
dimensional possibility space.

This software can be used
as a reference point in
relation to back-end
capabilities and user
interface.

Project Refinery

https://dynamobim.org/int
roducing-project-refinery/

https://www.keanw.com/2
018/11/project-refinery-
implement-generative-
design-workflows-for-
aec.html

closed source,
commercial

Project Refinery lets you create design
options through optimization. It
operates as a plugin for Autodesk Revit
Dynamo.

This software can be used
as a reference point in
relation to back-end
capabilities and user
interface.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 72

▪ 5 REALIZING QUALITY-DIVERSITY AND DESIGNER
MODELING IN PRISMARCH

As noted in Section 1, artificial intelligence in WP2 aims to provide an assistive technology
driven by the user in order to edit items collectively and in an informed manner. As described
in Prismarch DoW, the main dimensions for this assistive technology is envisioned through
the algorithms of Quality-Diversity Search and Designer Modeling. The needs of quality
diversity for a set of quality dimensions (as hard constraints and as “soft” objective functions)
and diversity dimensions (as exploration incentives) have largely shaped the writeup of this
deliverable, while Section 4 is also highly relevant as dimensions that can receive higher or
lower importance in different designer models. This section provides a high-level overview of
the principles of Quality-Diversity (QD) search and Designer Modeling in Section 5.1, and
reports on the internal workshops undertaken for WP2 with AEC industry partners in Section
5.2 in order to highlight the grand vision of PrismArch’s contribution within QD and designer
modeling.

o 5.1 Algorithmic Background

▪ 5.1.1 Quality Diversity Algorithms

Evolution Towards Quality-Diversity. Inspired by the extreme diversity of high-performing
creatures found in nature, the quality diversity (QD) paradigm [6] aims to discover the largest
possible set of diverse and high-quality solutions in one evolutionary run. Rather than employ
genotypic diversity mechanisms [161], QD stresses the importance of searching for diverse
solutions first and then maximize their quality. QD draws inspiration from the idea of
rewarding divergence to find the necessary stepping stones [162] towards high performing
areas of the search space. In divergent search, artificial evolution is not guided by a fitness
tied to the ultimate objective of the problem, but instead rewards directly the diversity of
solutions, based on notions such as novelty [163], surprise [164] or curiosity [165]. QD search
combines divergent search with localized convergence by (a) partitioning the conceptual
space into separate behavioral niches and/or (b) rewarding local competition between
individuals within the same niche and/or (c) enforcing minimal constraints of quality for
feasible solutions. In order to handle constraints, two-population approaches were previously
used in constrained optimization [157] to divergent search, and have since been used for QD
search as well [160]. In terms of local competition, its first implementation [166] rewarded a
solution based on the number of behaviorally similar solutions it outperformed; local
competition then acts as one objective with novelty [166] and/or surprise [167] acting as the
other objective in a multi-objective fashion.

Finally, partitioning the search space has been introduced by the MAP-Elites algorithm [133],
where the behavior space is discretized along d dimensions of behavior (features) and stored
as a grid or a feature map of cells. MAP-Elites enforces local competition by allowing only the
best individual in each cell to occupy it; however, some variants include multiple elites per
cell [6]. The fitness can be either mathematically formulated [168], derived from simulations
[133,160], or predicted from models trained on a corpus [169]. The behavior dimensions are
usually defined by the user; however, they can also be discovered automatically through
dimensionality reduction methods applied before or during evolution [170]. Features are
usually linear but can also be categorical, e.g. every bin storing an image that best matches a

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 73

different class [171]. In terms of how the space is partitioned along these features, most MAP-
Elites variants use uniformly distributed bins along two feature dimensions [133], although
ad-hoc partitions based on Voronoi regions [172] and dynamic partitions that adapt based on
the current populations’ characteristics [170] have been explored. Using multiple feature
maps has also been investigated [6]. Parent selection is also an important aspect that can
affect the performance of the algorithm, and different variants have been explored to
promote exploration of the feature space [173,132].

QD search algorithms, and MAP-Elites specifically, have primarily been tested in deceptive
problems with applications to robotics. Some of the early applications include maze
navigation testbeds [6,167] (where the proximity to the goal may not actually lead to good
strategies) and robot ambulation [133]. However, a number of real-world applications have
also been addressed through QD search. Among the most promising ones, Surrogate-Assisted
Illumination (SAIL) [169] leveraged machine-learned models that could predict the
performance results of lengthy physics simulations to inform the quality dimensions of a MAP-
Elites QD Search method. The surrogate-assisted MAP-Elites implementation was tested in
2D airfoil design [169], using two of the parameters of the design itself as dimensions for
exploration. Moreover, QD algorithms have been applied for game content generation in the
form of game levels [132], enemy behavior and abilities [160] and much more.

▪ 5.1.2 Designer Modeling

Designer modeling was introduced by Liapis et al. [2] as a method for capturing a designer's
intentions and preference and accommodating them via a computer-aided design tool.
Designer modeling is therefore envisioned as an instance of user modeling applied to
computer-aided design. The term can incorporate any computational model which recognizes
the goals, preferences or process of a human designer. Such a designer model can be useful
for personalized, responsive computer-aided design tools in the game industry or elsewhere.
Initially introduced for assistive design in game development tasks, designer models could be
considered similar to player modeling [175]; however, the designer model should be
considered distinct as it needs to incorporate the designer's intentions to satisfy the user, and
can be seen as second-order user modeling.

A successful designer model should recognize the preferences, process and goal of a designer
interacting with the tool, although accomplishing each of these aspects may hinge on
different algorithmic processes. Modeling the preference or overall style of a designer falls
under the category of preference learning [176], and requires extensive information on a
designer's choices, rankings or ratings among alternatives. Such adaptive models of taste have
been trained based on a user's choice of one artifact over others [130] or from a user's
rankings of artifacts in order of preference [177]. On the other hand, modeling the goals or
intentions of a designer may be achievable via goal recognition [178], e.g. by suggesting
possible next steps via a probabilistic model of cognitive associations based on past
interactions [179]. However, such a method will likely only present previously seen (or
created) concepts and thus stifle the designer's creativity. Finally, modeling the designer's
process can be seen as a short-term plan recognition problem [180]. Although past interaction
data can inform the model of trends in the design process, a process can be highly situational:
a designer may focus on fine-tuning different properties of their creations at different stages
of the process, without necessarily looking at the bigger picture until the very end. A model

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 74

of process could therefore be more accurate if it learned solely from the designer's current
actions rather than from a large pool of past interactions.

While user modeling [181] and player modeling [175] have a plethora of applications,
designer modeling remains a nascent field of inquiry. Sentient Sketchbook [17] explored
different computational models (and modelling algorithms) in order to capture and adapt the
generated suggestions based on a designer’s overall style (storing persistent weights of
features in a database), their current process (measuring the differences between their
current canvas and their previous iteration), and their goals in terms of symmetry (hard-
coding the representation in case the user’s current creation was mostly symmetrical)) [158].
The directions explored in this research showcase how different levels of preferences
(general, temporary, or session-specific) can inform the assistive AI through different data
structures and algorithms (persistent databases or changes to representation). Alvarez and
Font [182] introduce a designer preference model which takes advantage of the MAP-Elites
visualization of a two-dimensional feature map. The solution selected by a human designer in
the feature map is given absolute preference, and a decaying preference is given to
neighboring solutions to the selected one (based on the two-dimensional distance on the grid
of shown suggestions, as specified by the exploration dimensions of MAP-Elites). These
preferences are used to train a small neural network that uses the entire map layout as input,
and learns to predict the designer preference based on the shown (selected and unselected)
suggestions. Using the entire level layout differs from the approach of Sentient Sketchbook
[158], which used the precomputed fitness functions and adapted their weights directly. In a
follow-up study, Alvarez et al. [174] used an existing dataset of designer sessions, and
clustered each interim canvas into categories such as “initial room shapes”, “complex wall
mazes” or “dense” layouts. They then followed each session’s trace through the clusters, in
order to identify how designers explore the space and move from one design state to the
other. While there is no explicit machine learning or adaptation of the generated suggestions
in this work, it is an interesting way of processing large datasets of user logs and can be a
foundation for work in PrismArch if the volume of data collected during user studies is
sufficiently large.

o 5.2 Vision arising from Workshops with AEC industry partners
As a follow-up to the workshops conducted for the preparation of the deliverable (see Section
1.3), all AEC partners were asked to envision the use of Quality Diversity in the context of
PrismArch (based on the example applications that were presented during the workshops)
and to provide relevant ideas and examples.

The following sections present the summarized vision from all three AEC partners (ZHVR, AKT
II, and SWECO) and a preliminary reflection of the envisioned characteristics and features.
The full responses are included in this deliverable under Appendix A.

▪ 5.2.1 Envisioning QD in PrismArch - ZHVR

The following table summarizes the response of ZHVR to the 7th question of the
questionnaire, on the envisioned use of QD in the context of PrismArch.

Summarized response of ZHVR to question 7:

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 75

1. Architects are purposeful curators of information. The ideal focus of QD would be in
reducing and focusing information for the numerous workflows and scenarios illustrated in
D6.1.

2. The ability to select, group, and sphere items, introducing a timestamp and other associated
data, should be made as intuitive as possible.

3. As far as the UI/UX for the datasphere is concerned, the following are of importance:

a. Customization of personal space (avoid information overload)

b. Locating optimal visual representation (2D, 3D, multiple media)

c. Help with work basics

4. Key parameters for UI/UX:

a. Level of staff, team organization

i. Information optimization / curation (idiosyncratic disciplinary preferences)

ii. Information flows in teams and collectively

Regarding the first suggestion, QD is not only an optimization algorithm but at the same time
a very powerful tool for the “illumination” of certain properties of a (design) search space.
This aspect of QD effectively turns it into a powerful tool for the analysis and better
understanding of a design problem, as well as a medium through which the designers may
analyze their prior assumptions, or negotiate their different perspectives. Moreover, QD can
be used (and has been used) in ways that bring it very close to the ideal utilization that ZHVR
describe, where the automated, evolutionary search process is intertwined with the broader
process of (architectural) design in which many different processes take place. At a high level,
two exemplary approaches towards this direction include interactive evolution [50] and user
modeling [181]. Both of these approaches blend human agency (knowledge, skill, experience)
with the brute force of the search algorithm, with the potential of generating an outcome
that is superior to either. Apart from those examples, PrismArch offers an opportunity to
explore novel ways of human-AI interaction, especially suited to the special needs of the
problem at hand and the algorithmic paradigms of QD, user modeling and adaptation. Such
innovative ways of human-AI interaction will have to be approached gradually, on top of a
functioning prototype and with the help of a proper, and specifically designed, user interface.

Regarding the second suggestion, there has always been an expectation that users’
interaction with the QD assistive system should be tracked and time-stamped (see Section
2.2.5), as well as presented in an intuitive way. In order to support the generation of designer
models, data collection of the user’s interaction with the system is necessary. This data will
encode various aspects of their activity, including the selection between a set of available
solutions, the direct modification of an existing solution, or the generation of a design from
the ground up. Time-stamping these interactions is necessary in the context of designer
modeling and - as ZHVR argues - useful in the broader context of the PrismArch application.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 76

The third and fourth suggestions largely concern the interface between the user and the
broader PrismArch system. These interface requirements do not directly affect the QD
assistive system but will affect how users interact with, understand, and collaborate with each
other and with the AI system. For example the ability to customize one’s personal space is by
definition a matter of personal preference within the capabilities of modification that the UI
permits. The same can be said about the selection between various modes of visual
representation of a design (such as switching between 2D and 3D modes, or presenting
various relevant layers of information).

▪ 5.2.2 Envisioning QD in PrismArch - AKT II:

The vision of AKT II, in regard to the application of QD in the context of PrismArch are captured
in the following statements, which are based on the questionnaire that can be found in
section A.3.

Response of AKT II to question 7:

1. In response to the provided example: “The system keeps track of the user’s
interaction and learns to make suggestions that are more suitable to the user’s
preferences”:
Some problems are too specific to generalize and applying machine learning (designer
modeling) to them may be problematic. For these kinds of problems, perhaps it could be
best to allow the user to follow their experience and knowledge in order to generate viable
solutions. Designer-generated solutions may be then used in the context of training the
system.

2. In response to the provided example: “The user is able to interact with the system, by
selecting their preferred solutions or modifying existing solutions, thus intervening in the
evolutionary process”:
Even applying the ideas in (1) above, it seems likely that - even just in the first few iterations
- the system will still not be generating ideal/ viable options, and thus giving the user the
ability to at any stage step into the process and redirect the ongoing evolution seems very
sensible.

3. Exploration of non-geometric design spaces:
Some of the most significant challenges posed in projects are related to the logistics of
cross-disciplinary collaboration: sharing and maintenance of communications - sketches,
site photos, reports - as well as the expected digital models and drawings. Any Tools that
can highlight when these resources are not being used optimally would be hugely beneficial
across the lifespan of a project.
Some examples:

a. Offer suggestions to tag and/ or attach documents/ emails/ sketches to an item that
the system has flagged as related.

b. Tag prior iterations of a design artifact to the current version.

4. Model Synchronisation and Diffing:
As a more general topic: Something that emerges naturally from the multi-disciplinary
design process is the complexity of ensuring that the (necessarily) abstracted structural
analysis model is an accurate reflection of the architectural model. Problems arise if one of
these models is changed, and that does not carry through to the other. There might

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 77

therefore be value in producing tools to highlight when elements have changed
substantially enough in the architectural model to potentially need adjustment in the
structural version too.

Regarding the first suggestion, it is indeed likely that modelling a designer’s behavior or
experience for some very special projects, or even across a domain of very different projects,
will require a large amount of data and may, perhaps, be impractical. The generality or data
requirements of such designer models will have to be evaluated in experiments throughout
WP2 (and reported in D2.3). On the other point, the ability of the designer to intervene in the
evolutionary process, either in the form of selecting between generated solutions [50] or in
the form of directly modifying aspects of a specific solution are more than welcome features
that will even be necessary for the collection of interaction data and the training of the
aforementioned models. To conclude, the modes of interaction with the QD assistive AI
system are relatively unbounded as far as the back-end AI functionality is concerned and only
restricted by the available resources for the design and development of the necessary user
interface.

Regarding the second suggestion, it is true that the first iterations of an evolutionary approach
may not be generating ideal/viable options, but it is also not necessary for a user to constantly
interact with the system. Before “stepping in” and manually guiding the design process, the
user could first of all let the system operate for more iterations and simply observe the
solutions becoming better/more viable. Should the system fail to deliver the desired
outcome, there are many options for the designer to modify e.g. parameters of the algorithm
itself or the dimensions of diversity. If these adjustments still do not produce good results,
the user could include a manually generated solution (or a set of solutions) as a good “seed”
for the re-initialization of the evolutionary process.

The third suggestion warns that content that relates to the design process (including plans,
sketches, 3D models, renderings, pictures, as well as communication assets, like emails or
other forms of written communication) are often “lost” during cross-disciplinary collaboration
and indeed, may also be the case with human-AI collaboration. Allowing the AI to maintain
the provenance of the artefacts (previous versions, e.g. in the form of a genotypic lineage) or
meta-data attached by a user such as e-mails and sketches is both manageable and desirable
for a human-AI collaboration. On the other hand, developing an AI system that can predict
whether two source materials are related based on their raw data has different requirements
and requires vast amounts of data to train on. A simple system that tracks past relationships
and maintains them in future iterations is a more attainable and less data-intensive solution
instead.

The fourth suggestion raises the issue of changes that one discipline applies on the design
generating incompatibilities with the design that is being developed by another discipline.
Admittedly, this can be exacerbated when the QD assistive AI can be considered another
“agency” involved in the design process. It should be noted, however, that human designers
will definitely retain the high-level decision making ability and responsibility. The AI solution
proposed, moreover, unburdens human designers both from having to detect such problems
of incompatibility as well as from having to solve them. As long as the designers are operating
within the context of the QD assistive algorithm, it will be not only feasible for the system to
detect such incompatibilities, but also necessary. After all, the constraints that classify a

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 78

design solution as “feasible” include the non-existence of such incompatibilities. Having said
that, it will be very useful to highlight some categories of such incompatibilities, as well as
methods for addressing them, during the development of the QD - prototype.

▪ 5.2.3 Envisioning QD in PrismArch - Sweco:

As a response to Question 7, Sweco partners described a number of features that capture
their vision for the utilization of the Quality Diversity assistive AI system, as well as the
broader context of the PrismArch application.

Response from Sweco to Question 7:

1. The system can propose design solutions after given a set of parameters and restrictions.

2. The system can identify potential coordination errors and highlight to the user.

3. The system keeps track of interactions, learns from them and adapts the experience to
better suit the user’s needs. This may contain predefined scenarios for the user to choose
while logging in (e.g. coordination scenario, design scenario etc).

4. The system is used to provide effective UI to the logged in users.

5. The system can perform smart search based on the given keywords and present relevant
results which will be driven from the user interactions.

Some of their envisioned features are especially relevant to the specific operation of the QD
assistive AI system: they suggest that the system should be able to propose design solutions,
given a set of parameters and restrictions, which is aligned with the general purpose of the
assistive AI envisioned in WP2. Once the user defines the problem specification (see problem
representation, at section 2.2.1), the system will automatically generate a set of solutions and
organize them along the dimensions of diversity that the user has selected. Second, they
propose that the system should be able to identify potential coordination errors and highlight
them to the user. Indeed, as long as the relevant (implicit, explicit or interdisciplinary)
constraints have been properly encoded in the system, it should be able to detect whether
they are “satisfied”, as well as display the relevant information to the user. The distinction
between feasible solutions (that satisfy all the necessary constraints) and infeasible ones is a
key part of the QD algorithm’s application on design problems in general, as well as in the
specific context of PrismArch. Third, they propose that the system should keep track of user
interactions, learn from them and adapt the experience to better suit the user’s needs. This
may contain predefined scenarios for the user to choose while logging in (e.g. coordination
scenario, design scenario etc). This is very well aligned with the goals of designer modeling,
where the traces of a designer’s interaction with the tool can be used to train models that can
predict the designer’s behavior, experience or preference.

The remaining characteristics envisioned by Sweco relate to the broader UI and front-end
behavior of the PrismArch application, in general. This includes the potential of a smart search
based on the given keywords that can present relevant results driven from the user

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 79

interactions. Although such a functionality can be useful, it can easily be supported by a
simple database querying system and no AI is necessary for such tasks.

▪ 5.2.4 ZHVR: Context of design parameters

The following table summarizes the response of ZHVR to questions 1 and 2, which relate to
the definition of design parameters that are useful to explore, especially during the initial
stages of the design process:

Summarized response of ZHVR to questions 1 and 2 (Design parameters)

1. A design/solution is an emergent property that arises from the interactions between the
designers and the client or between partners.

2. The boundaries that shape the solution space are negotiated/discovered throughout the
design process.

Regarding the first takeaway, it is clear that the system should allow the user to modify the
“problem specification”, during the evolutionary search process. The problem specification
includes a set of aims and constraints that are specific to the design problem at hand. Those
aims and constraints should be negotiable and editable. One of the ways to evaluate a given
problem specification would be to examine the solution space that arises from it. In other
words, a given sample of solutions generated by the QD assistive system could be one of the
aspects of negotiating and reshaping the problem specification itself. This way, the design
problem, as well as its potential solutions can be updated based on the designer’s interactions
with the client, or with other partners.

Similarly, the second takeaway is very well aligned with QD search processes as the user can
select new dimensions of diversity (differentiation) between solutions, even during the course
of the evolutionary search process. The design dimensions are an important part of both the
subjective criteria and the domain knowledge that accompanies a solution space. Based on
this feedback, it is important to retain a flexibility in the potentially included set of such
dimensions.

▪ 5.2.5 ZHVR: Context of constraints:

The following table summarizes the response of ZHVR to questions 3 and 4, which relate to
the distinction of cross-discipline constraints:

Summarized response of ZHVR to questions 3 and 4 (Constraints)

1. Efficiency and responsiveness of the design process (ability to turn around a design revision
in a short time)

2. Good coordination with other disciplines, so as to highlight risks and propose solutions.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 80

Regarding the first takeaway, a QD evolutionary approach tackles this issue at its core. One
of the main aspects of QD algorithms is to generate a diverse set of solutions.

The second takeaway can be taken into account so that it also becomes central to the
system’s operation. More specifically, the QD-system could be utilized in such a way that it
provides a “common ground” between different design disciplines, effectively enabling a
dynamic interaction between them. This can be achieved by embedding design parameters
and constraints from all disciplines in the same system and selectively exposing some of them
to the users, depending on their “point of view”, but also allowing them to letting the users
select the ones that they are most interested in, but without completely excluding the rest
from the search-space.

▪ 5.2.6 ZHVR - context of optimization:

The following table summarizes the response of ZHVR to questions 5 and 6, which relate to
the aspects of optimization in the context of (architectural) design.

Summarized response of ZHVR to questions 5 and 6 (Optimization)

1. Mission statement (with respect to social and environmental impacts)

2. Client satisfaction (usability of space, keeping cost within budget, design intent, etc.)

3. Designer work-force must be effectively used: saving time and effort is key.

4. Tracking and understanding information that flows throughout the design process.

Regarding the mission statement, the aspects that belong to the sphere of community and
society (at a high level) are not directly quantifiable and therefore should better be managed
by the expertise and sensibilities of human designers. Certain relevant aspects, however, such
as sustainability metrics, can be addressed as problems of design optimization in the context
of quality-diversity, as is elaborated in sections 3.2.3 and 4.2.

Regarding the second statement, client satisfaction also includes many aspects where the
designer’s sensibilities, judgement and communication skills cannot be bypassed. However,
this aspect still includes a number of relevant features that can be treated as problems of QD
exploration and assistance. For example, optimizing the spatial arrangement of a layout or
the construction cost in relation to the quantity of materials, are examples of the many
possible relevant aspects.

Regarding the third statement, quality diversity can be used to assist the designer in exploring
the design space more efficiently. It can reveal the distribution of solutions along a number
of selected dimensions of diversity, while also taking into account implicit, explicit and inter-
disciplinary constraints. All of these characteristics make it especially relevant to the notion
of productivity.

Regarding the fourth statement, in its original version it includes many aspects that relate to
the user interface and user experience in the broader PrismArch application. As far as the
quality diversity and designer modeling system is concerned, tracking and understanding the

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 81

interaction between the system and the user is necessary and crucial. As explained in section
5.1.2, designer modeling depends on the collection of such data and can utilize them so as to
recognize the preferences, process and goal of a designer.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 82

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 83

▪ 6 CONCLUSIONS AND FUTURE STEPS

This Deliverable has laid out the principles and core concepts that underlie the design of the
PrismArch algorithms. The fact that the goal of AI integration in PrismArch is not to replace
human designers but rather to support and assist them requires a different approach from
many of the fully automated optimization work surveyed in this Deliverable. Much of the work
surveyed focuses on specific domains and artefacts of an AEC process, overlooking the
complexities of AEC collaboration and the constraints that can emerge when working with
different disciplines. To address the shortcomings and limits of the current literature, a
number of seminars, masterclasses and workshops were conducted with AEC partners of
PrismArch and a questionnaire was circulated. The responses to the questionnaire have
provided vital data points that have assisted in expanding the deliverable to better capture
the intricacies of actual practitioners’ priorities and to shape a grand vision for the integration
of assistive tools in a multidisciplinary collaboration setting as the one realized in PrismArch.

The fact that the QD assistive system generates alternatives to a human user’s design
necessitates that the representation chosen can allow for some control on the part of the
designer. Moreover, the envisioned system should not provide entirely new designs that are
likely to be too distant to the user’s current frame of thinking/designing [156], as these
suggestions will likely be rejected by the human user. Partners’ input also highlighted the
need for a human user to adjust, control, and override the AI initiative, which requires a
representation that is easy to manually edit. This necessitates a representation that is both
controllable and also expressive, and can capture –visually or functionally– many different
possible designs. On the other hand, the fact that the AI will have to operate on many
different phases of the design process and with many different end-users (e.g. architects,
engineers) means that the representation should follow some iterative refining [56] and
hierarchical structure. Specifically, during early conceptualization sketches the low-level
details (such as the presence of windows, sustainability or visibility) can be omitted and high-
level suggestions that focus on the building’s massing can be provided. During later stages
when the high-level concepts are finalized the representation can include details (and
evaluate content on more grounded functional constraints) while not modifying the greater
picture such as rooms’ dimensions or connectivity. Importantly, the parametric space,
functional constraints and design dimensions highlighted are designed for their integration
into quality-diversity algorithms such as MAP-Elites [133] in order to best visualize the
suggestions to human designers (see Figure 26 for an early example visualization). The
visualizations that MAP-Elites naturally offer as part of the search process can be shown to a
designer, even while the algorithm is still running (in theory). Upcoming work in WP2 (under
Task 2.2./2.3 and D2.2/D2.3) will explore how these algorithms, parametric definitions,
constraints, and preferences can be integrated with the VR tool developed and how best to
take advantage of AI in the service of human design.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 84

Figure 26: A feature map evolved via MAP-Elites to minimize distance from a designer’s ideal

room areas, while also mapping out the conceptual space along two diversity dimensions.

It should be noted that D2.1 surveyed a broad range of academic and commercial applications
of optimization, machine learning, evolutionary computation, and parametric modeling.
Some important related domains were also included as pertinent, specifically content
generation in computer games (as there is extensive work on evolutionary level design in this
field) and evolutionary art (as the exploration dimensions explored there could be repurposed
for architecture). While thorough, the literature review is not conclusive but provides a broad
range of examples for how spatial design problems have been represented and evaluated.
These examples, and many other papers reviewed in preparation of this deliverable, inform
some of our choices for the directions that PrismArch problem spaces (and solution spaces)
should follow. Additional seminars and questionnaires from AEC partners provided vital
insights that have largely been left unexplored in the academic literature. The problem of AI
suggestions in PrismArch will follow the same iterative process of architectural problem
definitions pointed out by Lawson [12]. We will have to iterate on these current directions
highlighted in D2.1 and revise them based on multiple iterations of analysis, independent
experiments, integration with the tool, consultations with AEC partners and expert designers,
and reflection. D2.1 will provide a roadmap for this iterative process, as it lists the
requirements and priorities of PrismArch and collates best practices, resources and software
that can facilitate the realization of a context-aware QD co-creator of human designers
operating in a VR space.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 85

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 86

▪ 7 REFERENCES

[1] K. A. De Jong, Evolutionary computation: a unified approach. MIT Press, 2006.

[2] A. Liapis, G. N. Yannakakis, and J. Togelius, “Designer modeling for personalized game
content creation tools,” in Proceedings of the AIIDE Workshop on Artificial Intelligence &
Game Aesthetics, 2013.

[3] K. O. Stanley and R. Miikkulainen, “A taxonomy for artificial embryogeny,” Artificial Life,
vol. 9, no. 2, pp. 93–130, 2003.

[4] Z. Michalewicz, D. Dasgupta, R. L. Riche, and M. Schoenauer, “Evolutionary algorithms for
constrained engineering problems,” Computers & Industrial Engineering, vol. 30, pp. 851–
870, 1996.

[5] R. Arnheim, Art and visual perception: a psychology of the creative eye. University of
California Press, revised and expanded ed., 2004.

[6] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new frontier for evolutionary
computation,” Frontiers in Robotics and AI, vol. 3, p. 40, 2016.

[7] A. Cully and Y. Demiris, “Quality and diversity optimization: A unifying modular
framework,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 245–259,
2018.

[8] G. Polya, How to solve it: a new aspect of mathematical method. Princeton University
Press, 2004.

[9] A. Newell, J. Shaw, and H. Simon, Elements of a theory of human problem solving. Rand
Corporation, 1957.

[10] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based procedural
content generation: A taxonomy and survey,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 3, no. 3, 2011.

[11] R. Hudson, Strategies for Parametric Design in Architecture: An application of practice
led research. PhD thesis, University of Bath, 2010.

[12] B. Lawson, How designers think: The design process demystified. Architectural Press,
2006.

[13] B. Hillier, J. Musgrove, and P. O’Sullivan, “Knowledge and design,” in Environmental
design: Research and practice (W. Mitchell, ed.), University of California, 1972.

[14] E. Motta and Z. Zdrahal, “Parametric design problem solving,” in Proceedings of the 10th
Banff Knowledge Acquisition for Knowledge-Based System Workshop, 1996.

[15] C. A. Baykan and M. S. Fox, “Constraint satisfaction techniques for spatial planning,” in
Intelligent CAD Systems III (P. J. W. ten Hagen and P. J. Veerkamp, eds.), (Berlin, Heidelberg),
pp. 187–204, Springer Berlin Heidelberg, 1991.

[16] R. Sharpe, B. Marksj¨o, J. Mitchell, and J. Crawford, “An interactive model for the layout
of buildings,” Applied mathematical modelling, vol. 9, no. 3, pp. 207–214, 1985.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 87

[17] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient sketchbook: Computer-aided game
level authoring,” in Proceedings of the 8th Conference on the Foundations of Digital Games,
pp. 213–220, 2013.

[18] A. Alvarez, S. Dahlskog, J. Font, J. Holmberg, C. Nolasco, and A. Osterman, “Fostering
creativity in the mixed-initiative evolutionary dungeon designer,” in Proceedings of the
International Conference on the Foundations of Digital Games, 2018.

[19] D. Ashlock, C. Lee, and C. Mcguinness, “Search-based procedural generation of maze-like
levels,” Computational Intelligence and AI in Games, IEEE Transactions on, vol. 3, pp. 260 –
273, 10, 2011.

[20] P. Lopes, A. Liapis, and G. N. Yannakakis, “Targeting horror via level and soundscape
generation,” in Proceedings of the AAAI Artificial Intelligence for Interactive Digital
Entertainment Conference, 2015.

[21] D. Karavolos, A. Liapis, and G. N. Yannakakis, “A multi-faceted surrogate model for
search-based procedural content generation,” IEEE Transactions on Games, vol. 13, no. 1, pp.
11–22, 2021.

[22] B. Hillier and J. Hanson, The Social Logic of Space. Cambridge University Press, 1984.

[23] H.-J. Bandelt and V. Chepoi, “Metric graph theory and geometry: a survey,”
Contemporary Mathematics, vol. 453, p. 49–86, 2008.

[24] B. Medjdoub and B. Yannou, “Separating topology and geometry in space planning,”
Computer-Aided Design, vol. 32, pp. 39–61, 2000.

[25] D. Karavolos, A. Liapis, and G. N. Yannakakis, “Evolving missions to create game spaces,”
in Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG), 2016.

[26] R. Linden, R. Lopes, and R. Bidarra, “Designing procedurally generated levels,” in
Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2013.

[27] Y.-C. Hsu and R. J. Krawczyk, “Space adjacency behavior in space planning,” in
Proceedings of the CAADRIA 2004 Conference, 2004.

[28] S. Arvin and D. House, “Modeling architectural design objectives in physically based space
planning,” Automation in Construction, vol. 11, pp. 213–225, 2002.

[29] J. C. Damski and J. S. Gero, “An evolutionary approach to generating constraint-based
space layout topologies,” in Proceedings of CAAD futures 1997, pp. 855–864, Springer, 1997.

[30] R. Koenig and K. Knecht, “Comparing two evolutionary algorithm based methods for
layout generation: Dense packing versus subdivision,” AI EDAM, vol. 28, no. 3, pp. 285–299,
2014.

[31] J. P. Duarte, “A discursive grammar for customizing mass housing: the case of siza’s
houses at malagueira,” Automation in construction, vol. 14, no. 2, pp. 265–275, 2005.

[32] A. Doulgerakis, “Genetic and embryology in layout planning,” Master’s thesis, University
of London, 2007.

[33] K. Shekhawat, “Algorithm for constructing an optimally connected rectangular floor
plan,” Frontiers of Architectural Research, vol. 3, no. 3, pp. 324–330, 2014.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 88

[34] K. Keatruangkamala and K. Sinapiromsaran, “Optimizing architectural layout design via
mixed integer programming,” in Computer Aided Architectural Design Futures 2005, pp. 175–
184, Springer, 2005.

[35] J. Michalek, R. Choudhary, and P. Papalambros, “Architectural layout design
optimization,” Engineering optimization, vol. 34, no. 5, pp. 461–484, 2002.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial networks,” in Proceedings of the International
Conference on Neural Information Processing Systems, 2014.

[37] W. Huang and H. Zheng, “Architectural drawings recognition and generation through
machine learning,” in Proceedings of ACADIA, 2018.

[38] S. Chaillou, “Ai + architecture: Towards a new approach,” Master’s thesis, Harvard GSD,
2019.

[39] S. Chaillou, “Space layouts & GANs: GAN-enabled floor plan generation.”
https://medium.com/spacemaker-research-blog/space-layouts-gans-2329c8f85fe8, 2020.
Accessed 27 April 2021.

[40] R. Hu, Z. Huang, Y. Tang, O. V. Kaick, H. Zhang, and H. Huang, “Graph2Plan: Learning
floorplan generation from layout graphs,” ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2020), vol. 39, no. 4, pp. 118:1–118:14, 2020.

[41] W. Langdon, R. Poli, N. Mcphee, and J. Koza, “Genetic programming: An introduction and
tutorial, with a survey of techniques and applications,” Studies in Computational Intelligence,
vol. 115, pp. 927–1028, 2008.

[42] L. Trujillo and G. Olague, “Using evolution to learn how to perform interest point
detection,” in Proceedings of the 18th International Conference on Pattern Recognition (ICPR
2006), pp. 211–214, 2006.

[43] A. Khan, A. S. Qureshi, N. Wahab, M. Hussain, and M. Y. Hamza, “A recent survey on the
applications of genetic programming in image processing,” 2020.

[44] Y. Azaria and M. Sipper, “Gp-gammon: Using genetic programming to evolve
backgammon players,” in Proceedings of the EuroGP Conference (M. Keijzer, A. Tettamanzi,
P. Collet, J. van Hemert, and M. Tomassini, eds.), pp. 132–142, 2005.

[45] Y. Shichel, E. Ziserman, and M. Sipper, “Gp-robocode: Using genetic programming to
evolve robocode players,” in Proceedings of the EuroGP Conference, 2005.

[46] L. D. Lohn J, Hornby G, “Evolutionary antenna design for a NASA spacecraft,” in Genetic
Programming Theory and Practice II, p. 301–315, O’Reilly, 2004.

[47] J. Koza, S. Al-Sakran, and L. Jones, “Automated re-invention of six patented optical lens
systems using genetic programming,” in Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1953–1960, 2005.

[48] A. O. Asojo, “Exploring alogirthms as form determinants in design,” in Proceedings 3rd
International Space Syntax Symposium, 2001.

[49] P. Coates and D. Makris, “Genetic programming and spatial morphogenesis,” in
Proceedings of the Symposium on Creative Evolutionary Systems, 1999.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 89

[50] H. Takagi, “Interactive evolutionary computation: Fusion of the capabilities of EC
optimization and human evaluation,” Proceedings of the IEEE, vol. 89, no. 9, pp. 1275–1296,
2001.

[51] R. Jagielski and J. S. Gero, “A genetic programming approach to the space layout planning
problem,” in CAAD futures 1997, pp. 875–884, Springer, 1997.

[52] J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez, A. Campbell, J. T. Folsom-Kovarik,
and K. O. Stanley, “Picbreeder: A case study in collaborative evolutionary exploration of
design space,” Evolutionary Computation, vol. 19, no. 3, pp. 373–403, 2011.

[53] A. Hoover, P. Szerlip, and K. Stanley, “Functional scaffolding for composing additional
musical voices,” Computer Music Journal, vol. 38, pp. 80–99, 12 2014.

[54] J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez, A. Campbell, and K. O. Stanley,
“Picbreeder: Evolving pictures collaboratively online,” in Proceedings of the Computer Human
Interaction Conference, 2008.

[55] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting
topologies,” Evolutionary Computation, vol. 10, p. 99–127, 2002.

[56] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient world: Human-based procedural
cartography,” in Proceedings of Evolutionary and Biologically Inspired Music, Sound, Art and
Design (EvoMusArt), vol. 7834, LNCS, pp. 180–191, Springer, 2013.

[57] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and K. O. Stanley, “Petalz: Search-based
procedural content generation for the casual gamer,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 8, no. 3, pp. 244–255, 2016.

[58] J. Clune and H. Lipson, “Evolving 3d objects with a generative encoding inspired by
developmental biology,” SIGEVOlution, vol. 5, p. 2–12, Nov. 2011.

[59] D. Ashlock and C. Mcguinness, “Landscape automata for search based procedural content
generation,” in Proceedings of the IEEE Conference on Computatonal Intelligence and Games,
2013.

[60] N. Shaker, A. Liapis, J. Togelius, R. Lopes, and R. Bidarra, “Constructive generation
methods for dungeons and levels,” in Procedural Content Generation in Games: A Textbook
and an Overview of Current Research (N. Shaker, J. Togelius, and M. J. Nelson, eds.), pp. 31–
55, Springer, 2016.

[61] M. Schoenauer, “Shape representations and evolution schemes,” in Proceedings of the
Fifth Annual Conference on Evolutionary Programming, 05 1997.

[62] D. Ashlock and C. McGuinness, “Automatic generation of fantasy role-playing modules,”
in Proceedings of the Computational Intelligence in Games Conference, 2014.

[63] W. Cachia, A. Liapis, and G. N. Yannakakis, “Multi-level evolution of shooter levels,” in
Proceedings of the AAAI Artificial Intelligence for Interactive Digital Entertainment
Conference, 2015.

[64] L. Wang, K. Chen, P. Janssen, and G. ji, “Algorithmic generation of architectural massing
models for building design optimisation - parametric modelling using subtractive and additive

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 90

form generation principles,” in Proceedings of the 25th International Conference of the
Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), 2020.

[65] F. Bao, D.-M. Yan, N. J. Mitra, and P. Wonka, “Generating and exploring good building
layouts,” ACM Transactions on Graphics, vol. 32, no. 4, 2013.

[66] J. Lim, P. Janssen, and R. Stouffs, “Automated generation of BIM models from 2D CAD
drawings,” in Proceedings of the 23rd International Conference of the Association for
Computer-Aided Architectural Design Research in Asia, 2018.

[67] A. Liapis, “Multi-segment evolution of dungeon game levels,” in Proceedings of the
Genetic and Evolutionary Computation Conference, 2017.

[68] OMA, “The interlace.” https://oma.eu/projects/the-interlace. Accessed 21 April 2021.

[69] P. Janssen and V. Kaushik, “Decision chain encoding: Evolutionary design optimization
with complex constraints,” in Proceedings of the EvoMusArt Conference, 2013.

[70] J. Gero and V. A. Kazakov, “Evolving design genes in space layout planning problems,”
Artificial Intelligence in Engineering, vol. 12, no. 3, pp. 163–176, 1998.

[71] G. Smith and J. Whitehead, “Analyzing the expressive range of a level generator,” in
Proceedings of the FDG workshop on Procedural Content Generation, 2010.

[72] Y. Davidor, “Epistasis variance: A viewpoint on ga-hardness,” in Foundations of genetic
algorithms, vol. 1, pp. 23–35, Elsevier, 1991.

[73] T. Galanos, A. Liapis, G. N. Yannakakis, and R. Koenig, “Arch-elites: Quality-diversity for
urban design,” in Proceedings of the Genetic and Evolutionary Computation Conference,
2021.

 [74] K. Chen, P. Janssen, and A. Schlueter, “Multi-objective optimisation of building form,
envelope and cooling system for improved building energy performance,” Automation in
Construction, vol. 94, pp. 449–457, 07 2018.

[75] T. S. Choo, P. Janssen, S. Roudavski, and B. Tuncer, “Maximise energy savings using
evolutionary multi-objective optimisation,” in Open Systems: Proceedings of the 18th
International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA
2013), p. 127–136, 2013.

[76] S. S. Wong and K. C. Chan, “Evoarch: An evolutionary algorithm for architectural layout
design,” Computer-Aided Design, vol. 41, no. 9, pp. 649–667, 2009.

[77] E. Rodrigues, A. R. Gaspar, and A. Gomes, “An evolutionary strategy enhanced with a
local search technique for the space allocation problem in architecture, part 1: Methodology,”
Comput. Aided Des., vol. 45, pp. 887–897, 2013.

[78] P. Charman, “A constraint-based approach for the generation of floor plans,” Proceedings
Sixth International Conference on Tools with Artificial Intelligence. TAI 94, pp. 555–561, 1994.

[79] L. B. Kovacs, “Knowledge based floor plan design by space partitioning: A logic
programming approach,” Artif. Intell. Eng., vol. 6, pp. 162–185, 1991.

[80] B. Medjdoub and B. Yannou, “Separating topology and geometry in space planning,”
Computer-Aided Design, vol. 32, no. 1, pp. 39–61, 2000.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 91

[81] A. Bahrehmand, T. Batard, R. Marques, A. Evans, and J. Blat, “Optimizing layout using
spatial quality metrics and user preferences,” Graphical Models, vol. 93, pp. 25–38, 2017.

[82] L. L. Beghini, A. Beghini, N. Katz, W. Baker, and G. Paulino, “Connecting architecture and
engineering through structural topology optimization,” Engineering Structures, vol. 59, pp.
716–726, 2014.

[83] R. Kicinger, T. Arciszewski, and K. Jong, “Evolutionary computation and structural design:
A survey of the state-of-the-art,” Computers & Structures, vol. 83, pp. 1943–1978, 2005.

[84] A. Hofler, U. Leysser, and J. Wiedeman, “Optimization of the layout of trusses combining
strategies based on michell’s theorem and on the biological principles of evolution,” in AGARD
Second Symp. on Structural Optimization 8 p(SEE N 74-15596 06-32), 1973.

[85] M. Lawo and G. Thierauf, “Optimal design for dynamic, stochastic loading-a solution by
random search,” Optimization Methods in Structural Design, p. 346, 1982.

[86] G. Anagnostou, E. M. Rønquist, and A. Patera, “A computational procedure for part
design,” Applied Mechanics and Engineering, vol. 97, pp. 33–48, 1992.

[87] C. Kane and M. Schoenauer, “Topological optimum design using genetic algorithms,”
Control and Cybernetics, vol. 25, 03 1997.

[88] P. Hajela and E. Lee, “Genetic algorithms in truss topological optimization,” International
Journal of Solids and Structures, vol. 32, pp. 3341–3357, 11 1995.

[89] C. D. Chapman, K. Saitou, and M. Jakiela, “Genetic algorithms as an approach to
configuration and topology design,” Journal of Mechanical Design 1994, 12 1994.

[90] L. A. Schmit, “Structural synthesis - its genesis and development,” AIAA Journal, vol. 19,
pp. 1249–1263, 1981.

[91] N. Khot and L. Berke, “Structural optimization using optimality criteria,” 02 1984.

[92] R. Kicinger, T. Arciszewski, and K. DeJong, “Evolutionary design of steel structures in tall
buildings,” Journal of computing in civil engineering, vol. 19, no. 3, pp. 223–238, 2005.

[93] “Sagrada fam´ılia.” https://en.wikipedia.org/wiki/Sagrada_Familia. Accessed: 2021-27-
04.

[94] “Montreal biosphere.” https://en.wikipedia.org/wiki/Montreal_Biosphere. Accessed:

2021-27-04.

[95] “L’oceanografic.” https://en.wikipedia.org/wiki/L%27Oceanografic. Accessed: 2021-27-

04.

[96] L. L. Stromberg, A. Beghini, W. Baker, and G. Paulino, “Application of layout and topology
optimization using pattern gradation for the conceptual design of buildings,” Structural and
Multidisciplinary Optimization, vol. 43, pp. 165–180, 2011.

[97] P. Block, Thrust Network Analysis: Exploring Three-dimensional Equilibrium. PhD thesis,
Cambridge, MA, USA, May 2009. PhD dissertation.

[98] “Block research group (brg).” https://www.block.arch.ethz.ch/brg/about. Accessed:
2021-27-04.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 92

[99] M. Rippmann, L. Lachauer, and P. Block, “Rhinovault - interactive vault design,”
International Journal of Space Structures, vol. 27, pp. 219–230, December 2012.

[100] N. Bouchlaghem and K. Letherman, “Numerical optimization applied to the thermal
design of buildings,” Building and Environment, vol. 25, pp. 117–124, 1990.

[101] J. Gero, N. D’cruz, and A. Radford, “Energy in context: A multicriteria model for building
design,” Building and Environment, vol. 18, pp. 99–107, 1983.

[102] R. Evins, “A review of computational optimisation methods applied to sustainable
building design,” Renewable & Sustainable Energy Reviews, vol. 22, pp. 230–245, 2013.

[103] V. Zegarac Leskovar and M. Premrov, “An approach in architectural design of energy-
efficient timber buildings with a focus on the optimal glazing size in the south-oriented
facade,” Energy and Buildings, vol. 43, no. 12, pp. 3410–3418, 2011.

[104] D. Coley and S. Schukat, “Low-energy design: combining computer-based optimisation
and human judgement,” Building and Environment, vol. 37, pp. 1241–1247, 2002.

[105] D. Tuhus-Dubrow and M. Krarti, “Genetic-algorithm based approach to optimize
building envelope design for residential buildings,” Building and Environment, vol. 45, no. 7,
pp. 1574–1581, 2010.

[106] M. Sahu, B. Bhattacharjee, and S. C. Kaushik, “Thermal design of air-conditioned building
for tropical climate using admittance method and genetic algorithm,” Energy and Buildings,
vol. 53, pp. 1–6, 2012.

[107] S. Bambrook, A. Sproul, and D. Jacob, “Design optimisation for a low energy home in
Sydney,” Energy and Buildings, vol. 43, no. 7, pp. 1702–1711, 2011.

[108] J. Holst, “Using whole building simulation models and optimizing procedures to optimize
building envelope design with respect to energy consumption and indoor environment.,” in
Proceedings of the Eighth International IBPSA Conference, 2003.

[109] A. Marsh, “Computer-optimised shading design,” in Proceedings of the building
simulation conference 2003, 01 2003.

[110] M. Turrin, P. V. Buelow, and R. Stouffs, “Design explorations of performance driven
geometry in architectural design using parametric modeling and genetic algorithms,” Adv.
Eng. Informatics, vol. 25, pp. 656–675, 2011.

[111] J. M. Gagne and M. Andersen, “A generative facade design method based on daylighting
performance goals,” Journal of Building Performance Simulation, vol. 5, pp. 141 – 154, 2012.

[112] L. Caldas, “Generation of energy-efficient architecture solutions applying gene arch: An
evolution-based generative design system,” Adv. Eng. Informatics, vol. 22, pp. 59–70, 2008.

[113] C.-S. Park, G. Augenbroe, and T. Messadi, “Daylighting optimization in smart facade
systems,” in Proceedings of the Eighth International IBPSA Conference, 01 2003.

[114] R. Evins, P. Pointer, and R. Vaidyanathan, “Multi-objective optimisation of the
configuration and control of a double-skin facade,” 11 2011.

[115] D. Saelens, B. Blocken, S. Roels, and H. Hens, “Optimization of the energy performance
of multiple-skin facades,” in Proceedings of the Ninth International IBPSA Conference, 2007.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 93

[116] M. Palonen, A. Hasan, and K. Siren, “A genetic algorithm for optimization of building
envelope and HVAC system parameters,” Proc. IBPSA’09, pp. 159–166, 2009.

[117] K. F. Fong, V. I. Hanby, and T.-T. Chow, “HVAC system optimization for energy
management by evolutionary programming,” Energy and Buildings, vol. 38, no. 3, pp. 220–
231, 2006.

[118] W. Huang and H. Lam, “Using genetic algorithms to optimize controller parameters for
HVAC systems,” Energy and Buildings, vol. 26, no. 3, pp. 277–282, 1997.

[119] R. Evins, P. Pointer, and R. Vaidyanathan, “Optimisation for chp and cchp decision-
making,” in Proceedings of the Building Simulation 2011 Conference, Sydney, Australia, pp.
1335–1342, 2011.

[120] O. Shaneb, P. Taylor, and G. Coates, “Optimal online operation of residential µchp
systems using linear programming,” Energy and Buildings, vol. 44, pp. 17–25, 2012.

[121] V. Kaushik and P. Janssen, “Multi-criteria evolutionary optimisation of building
envelopes during conceptual stages of design,” in Beyond Codes and Pixels: Proceedings of
the 17th International Conference on Computer-Aided Architectural Design Research in Asia,
p. 497–506, 01, 2012.

[122] P. Janssen, “Dexen: A scalable and extensible platform for experimenting with
population-based design exploration algorithms,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing : AI EDAM, vol. 29, pp. 443–455, 11 2015.

[123] “Houdini.” https://www.sidefx.com/products/houdini/. Accessed: 2021-27-04.

[124] P. Janssen and V. Kaushik, “Iterative refinement through simulation: Exploring trade-
offs between speed and accuracy,” in Proceedings of the 30th eCAADe Conference, pp. 555–
563, 2012.

[125] “Galapagos evolutionary solver.”
https://grasshopperdocs.com/addons/galapagos.html. Accessed: 2021-27-04.

[126] L. Wang, P. Janssen, K. Chen, Z. Tong, and G. ji, “Subtractive building massing for
performance-based architectural design exploration: A case study of daylighting
optimization,” Sustainability, vol. 11, p. 6965, 12 2019.

[127] R. Arnheim, Art and visual perception: a psychology of the creative eye. University of
California Press, revised and expanded ed. (2004) ed., 2004.

[128] V. S. Ramachandran and W. Hirstein, “The science of art: a neurological theory of
aesthetic experience,” Journal of consciousness Studies, vol. 6, pp. 15–51, 1999.

[129] G. Ochoa, “On genetic algorithms and lindenmayer systems,” in Parallel Problem Solving
from Nature — PPSN V (A. E. Eiben, T. Back, M. Schoenauer, and H.-P. Schwefel, eds.), (Berlin,
Heidelberg), pp. 335–344, Springer Berlin Heidelberg, 1998.

[130] A. Liapis, G. N. Yannakakis, and J. Togelius, “Adapting models of visual aesthetics for
personalized content creation,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 4, no. 3, pp. 213–228, 2012.

[131] A. Alvarez, S. Dahlskog, J. Font, J. Holmberg, and S. Johansson, “Assessing aesthetic
criteria in the evolutionary dungeon designer,” in Proceedings of the 13th International
Conference on the Foundations of Digital Games, pp. 1–4, 2018.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 94

[132] K. Sfikas, A. Liapis, and G. N. Yannakakis, “Monte carlo elites: Quality-diversity selection
as a multi-armed bandit problem,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2021.

[133] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping elites,” ArXiv, vol.
abs/1504.04909, 2015.

[134] A. Gartus and H. Leder, “Predicting perceived visual complexity of abstract patterns
using computational measures: The influence of mirror symmetry on complexity perception,”
PLoS One, vol. 12, no. 11, 2017.

[135] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

[136] R. Hubner and M. G. Fillinger, “Comparison of objective measures for predicting
perceptual balance and visual aesthetic preference,” Frontiers in psychology, vol. 7, p. 335,
2016.

[137] C. Redies, J. Hasenstein, and J. Denzler, “Fractal-like image statistics in visual art:
similarity to natural scenes,” Spatial vision, vol. 21, no. 1-2, pp. 137–148, 2008.

[138] W. S. Geisler, J. S. Perry, B. Super, and D. Gallogly, “Edge co-occurrence in natural images
predicts contour grouping performance,” Vision research, vol. 41, no. 6, pp. 711–724, 2001.

[139] A. Wilson and A. Chatterjee, “The assessment of preference for balance: Introducing a
new test,” Empirical Studies of the Arts, vol. 23, no. 2, pp. 165–180, 2005.

[140] G. Mather, “Visual image statistics in the history of western art,” Art & Perception, vol.
6, no. 2-3, pp. 97–115, 2018.

[141] C. Redies, S. A. Amirshahi, M. Koch, and J. Denzler, “Phog-derived aesthetic measures
applied to color photographs of artworks, natural scenes and objects,” in European
conference on computer vision, pp. 522–531, Springer, 2012.

[142] C. Redies, A. Brachmann, and G. U. Hayn-Leichsenring, “Changes of statistical properties
during the creation of graphic artworks,” Art & Perception, vol. 3, no. 1, pp. 93–116, 2015.

[143] E. Van Geert and J. Wagemans, “Order, complexity, and aesthetic appreciation,”
Psychology of Aesthetics, Creativity, and the Arts, vol. 14, no. 2, p. 135, 2020.

[144] P. Machado, J. Romero, M. Nadal, A. Santos, J. Correia, and A. Carballal, “Computerized
measures of visual complexity,” Acta psychologica, vol. 160, pp. 43–57, 2015.

[145] C. Alexander, The nature of order. Taylor & Francis, 2004.

[146] C. Alexander, A pattern language: towns, buildings, construction. Oxford university
press, 1977.

[147] M. Benedikt, “To take hold of space: Isovists and isovist fields,” Environment and
Planning B: Planning and Design, vol. 6, pp. 47–65, 01 1979.

[148] A. Turner, M. Doxa, D. O’Sullivan, and A. Penn, “From isovists to visibility graphs: A
methodology for the analysis of architectural space,” Environment and Planning B: Planning
and Design, vol. 28, pp. 103 – 121, February 2001.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 95

[149] A. Stamps, “Isovists, enclosure, and permeability theory,” Environment and Planning B:
Planning and Design, vol. 32, pp. 735 – 762, 2005.

[150] M. L. Benedikt and C. A. Burnham, “Perceiving architectural space: From optic arrays to
isovists,” Persistence and change, pp. 103–114, 1985.

[151] P. Koutsolampros, K. Sailer, T. Varoudis, and R. Haslem, “Dissecting visibility graph
analysis: The metrics and their role in understanding workplace human behaviour,” in
Proceedings of the 12th Space Syntax Symposium, 2019.

[152] “depthmapx.” https://varoudis.github.io/depthmapX/. Accessed: 2021-27-04.

[153] M. M. al Rifaie, A. Ursyn, R. Zimmer, and M. J. Javid, “On symmetry, aesthetics and
quantifying symmetrical complexity,” in EvoMUSART, 2017.

[154] M. M. al Rifaie, “Dispersive flies optimisation,” 2014 Federated Conference on
Computer Science and Information Systems, pp. 529–538, 2014.

[155] A. Turner, Depthmap 4: a researcher’s handbook. Bartlett School of Graduate Studies,
University College London, 2004.

[156] A. Liapis, G. N. Yannakakis, C. Alexopoulos, and P. Lopes, “Can computers foster human
users’ creativity? Theory and praxis of mixed-initiative co-creativity,” Digital Culture &
Education (DCE), vol. 8, no. 2, pp. 136–152, 2016.

[157] A. Liapis, G. N. Yannakakis, and J. Togelius, “Constrained novelty search: A study on
game content generation,”Evolutionary Computation, vol. 23, no. 1, pp. 101–129, 2015.

[158] A. Liapis, G. N. Yannakakis, and J. Togelius, “Designer modeling for Sentient
Sketchbook,” in Proceedings of the IEEE Conference on Computational Intelligence and
Games (CIG), 2014.

[159] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a feasible-infeasible
two-population (FI-2pop) genetic algorithm for constrained optimization: Distance tracing
and no free lunch,” European Journal of Operational Research, vol. 190, no. 2, pp. 310–327,
2008.

[160] A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: Bullet hell generation through
con-strained MAP-Elites,” in Proceedings of The Genetic and Evolutionary Computation
Conference, pp. 1047–1054, ACM, 2018.

[161] M. Preuss. Multimodal optimization by means of evolutionary algorithms. Springer,
2015.

[162] E. Meyerson and R. Miikkulainen. Discovering evolutionary stepping stones through
behavior domination. In Proceedings of the Genetic and Evolutionary Computation
Conference, page 139–146, 2017.

[163] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2), 2011.

[164] D. Gravina, A. Liapis, and G. N. Yannakakis. Surprise search: Beyond objectives and
novelty. In Proceedings of the Genetic and Evolutionary Computation Conference. ACM,
2016.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 96

[165] C. Stanton and J. Clune. Curiosity search: Producing generalists by encouraging
individuals to continually explore and acquire skills throughout their lifetime. PLoS ONE, 11(9),
2016.

[166] J. Lehman and K. O. Stanley. Evolving a diversity of virtual creatures through novelty
search and local competition. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation, pages 211–218, 2011.

[167] D. Gravina, A. Liapis, and G. N. Yannakakis. Quality diversity through surprise. IEEE
Transactions on Evolutionary Computation, 23(4):603–616, 2019.

[168] D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias. Evaluating evolutionary algorithms.
Artificial Intelligence, 85(1-2):245 – 276, 1996.

[169] A. Gaier, A. Asteroth, and J.-B. Mouret. Data-efficient design exploration through
surrogate-assisted illumination. Evolutionary Computation, 26:381–410, 2018.

[170] A. Cully. Autonomous skill discovery with quality-diversity and unsupervised
descriptors. In Proceedings of the Genetic and Evolutionary Computation Conference, page
81–89, 2019.

[171] A. Nguyen, J. Yosinski, and J. Clune. Understanding innovation engines: Automated
creativity and improved stochastic optimization via deep learning. Evolutionary Computation,
24(3):545–572, 2016.

[172] V. Vassiliades, K. Chatzilygeroudis, and J.-B. Mouret. Using centroidal Voronoi
tessellations to scale up the multi-dimensional archive of phenotypic elites algorithm. IEEE
Transactions on Evolutionary Computation, 2017.

[173] Antoine Cully and Yannis Demiris. 2018. Quality and Diversity Optimization: A Unifying
Modular Framework. IEEE Transactions on Evolutionary Computation 22, 2 (2018), 245–259.

[174] A. Alvarez, J. Font, and J. Togelius. 2020. Towards Designer Modeling through Design
Style Clustering. ArXiv, abs/2004.01697.

[175] G. N. Yannakakis, P. Spronck, D. Loiacono, and E. Andre, “Player modeling,” Dagstuhl
Seminar on Game Artificial and Computational Intelligence, 2013.

[176] J. Fürnkranz and E. Hüllermeier, Preference Learning. Springer-Verlag New York, Inc.,
2010.

[177] A. Liapis, H. P. Martinez, J. Togelius, and G. N. Yannakakis, “Adaptive game level creation
through rank-based interactive evolution,” in Proceedings of the IEEE Conference on
Computational Intelligence and Games (CIG), 2013.

[178] B. A. Goodman and D. J. Litman, “On the interaction between plan recognition and
intelligent interfaces,” User Modeling and User-Adapted Interaction, vol. 2, pp. 83–115, 1992.

[179] H.-C. Wang, “Modeling idea generation sequences using Hidden Markov Models,” in
Proceedings of the 30th Annual Meeting of the Cognitive Science Society, 2008.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 97

[180] H. A. Kautz, “A formal theory of plan recognition,” Ph.D. dissertation, Bell Laboratories,
1987.

[181] D. Benyon and D. Murray, 1993. Applying user modeling to human computer interaction
design. Artificial Intelligence Review 7(3-4):199-225.

[182] A. Alvarez and J. Font, 2020. Learning the designer’s preferences to drive evolution. In
Proceedings of the International Conference on the Applications of Evolutionary
Computation.

[183] Kwon, N., Song, K., Park, M., Jang, Y., Yoon, I., & Ahn, Y. (2019). Preliminary service life
estimation model for MEP components using case-based reasoning and genetic algorithm.
Sustainability, 11(11), 3074.

[184] Palomera-Arias, R., & Liu, R. (2015, June). Mechanical, Electrical, and Plumbing Systems
in Construction Management: A Literature Review of Existing MEP Textbooks. In 2015 ASEE
Annual Conference & Exposition (pp. 26-1143).

[185] Hassanain, M. A., Aljuhani, M., Sanni-Anibire, M. O., & Abdallah, A. (2019).
Interdisciplinary design checklists for mechanical, electrical and plumbing coordination in
building projects. Built Environment Project and Asset Management.

[186] Wang, L., & Leite, F. (2016). Formalized knowledge representation for spatial conflict
coordination of mechanical, electrical and plumbing (MEP) systems in new building projects.
Automation in construction, 64, 20-26.

[187] Li, Nan, Cheung, Sherman C. P, Li, Xiaodong, and Tu, Jiyuan. "Multi-objective
Optimization of HVAC System Using NSPSO and Kriging Algorithms—A Case Study." Building
Simulation 10.5 (2017): 769-81. Web.

[188] Hulya Durur. "HVAC Optimization Based on Fuzzy Logic in Official Buildings."
International Journal of Computer Science and Software Engineering 7.1 (2018): 1-5. Web.

[189] Franco, Alessandro, Bartoli, Carlo, Conti, Paolo, Miserocchi, Lorenzo, and Testi, Daniele.
"Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant
Comfort in Educational Buildings." Energies (Basel) 14.10 (2021): 2847. Web.

[190] Yuan, Xiaolei, Pan, Yiqun, Yang, Jianrong, Wang, Weitong, and Huang, Zhizhong. "Study
on the Application of Reinforcement Learning in the Operation Optimization of HVAC
System." Building Simulation 14.1 (2021): 75-87. Web.

[191] Kotevska, Olivera, Johnston, Travis, Zandi, Helia, Kurte, Kuldeep, McKee, Evan, Munk,
Jeffrey, and Perumalla, Kalyan. "RL-HEMS: Reinforcement Learning Based Home Energy
Management System for HVAC Energy Optimization." ASHRAE Transactions 126.1 (2020):
421. Web.

[192] Manuel, Mark Christian E, Lin, Po Ting, and Chang, Ming. "Optimal Duct Layout for HVAC
Using Topology Optimization." Science & Technology for the Built Environment 24.3 (2018):
212-19. Web.

[193] Korman, T. M., Fischer, M. A., & Tatum, C. B. (2003). Knowledge and reasoning for MEP
coordination. Journal of Construction Engineering and Management, 129(6), 627-634.

[194] Tatum, C. B., & Korman, T. (2000). Coordinating building systems: process and
knowledge. Journal of Architectural Engineering, 6(4), 116-121.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 98

[195] Korman, T. M. (2009). Rules and guidelines for improving the mechanical, electrical, and
plumbing coordination process for buildings. In Construction Research Congress 2009:
Building a Sustainable Future (pp. 999-1008).

[196] Korman, T. M. (2001). Integrating multiple products over their life-cycles: An
investigation of mechanical, electrical, and plumbing coordination. Stanford University.

[197] Yarmohammadi, S., & Ashuri, B. (2015). Exploring the approaches in the implementation
of BIM-based MEP coordination in the USA. Journal of Information Technology in
Construction (ITcon), 20(22), 347-363.

[198] Riley, D., & Horman, M. (2001, August). Effects of design coordination on project
uncertainty. In Proceedings of the 9th Annual Conference of the International Group for Lean
Construction (IGLC-9), Singapore (pp. 1-8).

[199] Khanzode, A., Fischer, M., & Reed, D. (2008). Benefits and lessons learned of
implementing building virtual design and construction (VDC) technologies for coordination of
mechanical, electrical, and plumbing (MEP) systems on a large healthcare project. J. Inf.
Technol. Constr., 13, 324-342.

[200] Khanzode, A. (2010). An integrated, virtual design and construction and lean (IVL)
method for coordination of MEP. Unpublished Technical Report, 187.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 99

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 100

▪ APPENDIX A: QUESTIONNAIRE AND RESPONSES

o A.1 Original Questionnaire provided to partners

Questionnaire - Quality Diversity in PrismArch

Introduction:

This questionnaire has been prepared by the UM team, as a follow-up to the first workshop
on Quality-Diversity generative AI (which took place on [...]). We are using this document as
a shared space for the exchange of ideas, in order to identify the best ways for exploiting our
available technologies in the context of PrismArch.

[Additional details for deadlines and links to presentations made for the purposes of this
questionnaire are omitted from the public deliverable]

▪ Questions:

Question 1: Which (combined) characteristics of a design / solution do you find more
valuable to explore, especially during the initial stages of design? How
do you measure / assess those characteristics?

Q1 - Answers: Please state your name, discipline, affiliation

and provide your answers below!

...

Question 2: If the characteristics that you use to explore the solution space are
difficult to quantify, could you attempt to describe them in qualitative
terms? Are there any quantifiable characteristics that they relate to,
even indirectly?

Q2 - Answers: Please state your name, discipline, affiliation

and provide your answers below!

...

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 101

Question 3: What are the most critical constraints that are imposed on your
discipline by other disciplines?

Q3 - Answers: Please state your name, discipline, affiliation

and provide your answers below!

...

Question 4: What are the most critical constraints from your discipline that you feel
other disciplines should respect?

Q4 - Answers: Please state your name, discipline,

affiliation and provide your answers below!

...

Question 5: What are the most important features of a design / solution that your
discipline attempts to optimize?

How can you measure / assess those features?

Q5 - Answers: Please state your name, discipline, affiliation

and provide your answer below!

...

Question 6: If the optimization process occurs through an abstract / subjective
process of refinement, could you attempt to describe it? Are there any
quantifiable characteristics that it relates to, even indirectly?

Q6 - Answers: Please state your name, discipline, affiliation

and provide your answer below!

...

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 102

Question 7: Based on the example applications of Quality Diversity (QD) that you
saw and discussed in the last workshop, how would you envision the
use of QD in your discipline and across disciplines?

Some example features are the following:

- The system is used in order to analyze the design space and
provide the designer with a broad overview of the possible
solutions, across a number of behavioral dimensions.

- The user is able to interact with the system, by selecting their
preferred solutions or modifying existing solutions, thus
intervening in the evolutionary process.

- The system keeps track of the user’s interaction and learns to
make suggestions that are more suitable to the user’s
preferences.

Q7 -
Answers:

Please state your name, discipline, affiliation

and provide your answers below!

...

o A.2: Responses from ZHVR

Question 1: Which (combined) characteristics of a design / solution do you find more
valuable to explore, especially during the initial stages of design? How do you
measure / assess those characteristics?

ZHVR: Design/ solution as an emergent property

The architectural design/solution space is defined through ongoing interactions
with the client, and the other professional teams. It is important to note that
when we begin a project, we have no way of knowing the end result. The result
is an emergent property of our interactions and design activity. There are no
readymade solutions. Design is a process - a path of experimentation.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 103

Question 2: If the characteristics that you use to explore the solution space are difficult to
quantify, could you attempt to describe them in qualitative terms? Are there
any quantifiable characteristics that they relate to, even indirectly?

ZHVR: Defining the bounds of the solution space

The characteristics that define a solution space are more akin to boundary
conditions. These are defined by the client brief; the zoning and local
regulations; site characteristics, such as orientation, adjacencies and contextual
site conditions (e.g. a highway to the south, high-rise residential developments
to the north); and other contributing factors such as quality of soil, existing
infrastructure below grade, or any planting that needs to be preserved, etc. In
addition to the characteristics listed, the budget plays a critical role in setting out
what we can aim to achieve in a project.

A combination of the client brief and the site conditions will create the boundary
constraints for the future building volume. In any project, there will be a mixture
of the parameters and limitations; there will be hard and soft limitations, and
everything in-between. The building regulations and some other persistent
limitations can formulate clear qualitative and quantitative guidelines for the
approximation of the maximum build volume, which can be visualized in initial
massing studies as a first step toward defining the possibility space of the
project.

Typically, the massing studies will show the maximum building volume envelope,
as a step toward establishing the parameter space for the ensuing design
exercise. This step itself can be related to the “workmanship of certainty”
defined by Davie Pye. There are few risks involved. Ultimately, this is not an
imposed limitation to the future design exercise, but a suggestion. It is important
that designers receive the sources of information that led to this envelope
limitation, to allow the industry to maintain the Golden Thread principle. By
understanding how we arrived at that envelope, the designers can correct any
wrongful assumptions of AI. Therefore, it is also the capacity of the designer to
interact with the suggestions and the design parameters is critical to the
successful implementation of the tool.

It is important to note here that we do not know/ do not have access to all the
limitations of the site from the very onset. A lot of these constraints and limiting
values are revealed through iteration of proposals for the site. Often with
building regulations there is some leeway in how they can be interpreted, and
room for negotiation with the governing bodies. The client often engages with
the local authority and is able to leverage the permissions based on leveraging
other projects in the jurisdiction, etc.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 104

WP1 Case Study 02
https://docs.google.com/presentation/d/1xKbqKpYfjkRwSSuY6SzzBODX6sYcCp
gIAmlqU9WUNak/edit?usp=sharing

As set out in D1.1, design result/solution is an iterative, emergent process:

An initial brief (statement of need) is presented by the client, and then refined
throughout the feasibility study stage together with the architects. The resulting
final brief is shared with the other design partners.

Inside PrismArch, all disciplines will be branching off design options, and
evaluating them based on different qualities / parameters.

One of the design goals of the massing is a cross-check with the program and the
tally of the floor areas, as well as a check of adjacencies, daylight dependencies,
access, etc. However, it is important to note that some of the most iconic and

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 105

memorable architectural designs challenge these received rules and wisdoms.
The Centre Pompidou in Paris is a textbook example of an inversion of the typical
formula.

Question 3: What are the most critical constraints that are imposed on your discipline by
other disciplines?

ZHVR: Critical constraints:

- Efficiency and responsiveness of the design process (ability to turn
around a design revision in a short time). Nimble, professional output is
needed for client satisfaction.

- What’s crucial throughout the project is the other disciplines’ ability to
highlight any potential risks and propose possible solutions early on in
the project.

Other constraints:

- Design impacts of structure and MEP

- Cost impacts*
*A certain threshold of information is required before we can begin to
address the budget.

- Cost impacts* of facade / glazing openness (seen as an impact to MEP)

- Cost impacts* of specialized, coordinated, combined solutions, or
custom technological solutions (anything non-standard)

- Both the structural and MEP disciplines require an architectural proposal
to respond to and evaluate. Architects embed our early understanding
of the economy of the project into the initial proposal.

- Both the structural and MEP disciplines affect the usable space. If a
building is imagined as a volume with strict boundary conditions
(defined by the characteristics listed for Question 2), then the MEP
solution will require ducting and (a) machine room(s) of certain
dimensions. The structural solution will also take up a percentage of the
volume - it may be a core and slab solution requiring columns, or
cantilevers that increase the depth of each floorplate, but whatever
structure is needed to support the building influences the inhabitable
space.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 106

Question 4: What are the most critical constraints from your discipline that you feel other
disciplines should respect?

ZHVR: Coordination and design intent

- The habitable spaces cannot be modified (additional structure,
ductwork,etc) without coordination with architects. Architectural
professionals design the interface between the human and the built
environment; therefore the location of faucets, access panels, fire
alarms, sprinklers, electric sockets, etc - all need to be coordinated with
the architectural team. The experience of the end user must be taken
into account from the architectural perspective.

- The uniqueness of the project / design solution requires Structure and
MEP to work within the envelopes that we propose.

- Ideally, we move from the large gesture / big picture to the detail level,
going from large to small in the narrative. It is tremendously difficult to
redefine the big picture narrative late in the project development. The
most hurtful interventions by other disciplines are ones that damage or
break the golden thread, or break the design history.

Question 5: What are the most important features of a design / solution that
your discipline attempts to optimize?

How can you measure / assess those features?

ZHVR: Mission statement for architecture:

(ref. RIBA Code of Professional Conduct)

- duty to the wider public local community and society

- future-proofing and sustainable solutions (forward thinking design
approach, making the building adaptable to possible future uses)

- consider the impact of a project on the natural environment

Client satisfaction

- usability of space & fitness to the brief, design intent (broader
design narrative that captures the client’s imagination), cost,
timeliness and accuracy of deliverables.

- The satisfaction of the client is defined as the convergence of the
proposal’s cost / time / risk, overlaid with the client’s available

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 107

budget / procurement options / desired scope. The quality
expectation is usually communicated as a set of performance-
based characteristics (environmental, social, and project-type
specific [i.e. acoustic] etc.)

-

Question 6: If the optimization process occurs through an abstract / subjective
process of refinement, could you attempt to describe it? Are there
any quantifiable characteristics that it relates to, even indirectly?

ZHVR: Optimization. n. = the action of making the best or most effective use of a
situation (or resource).

The designer is the resource that we must make the most effective use of.
Saving time and effort is key, as well as avoiding cognitive overload and finding
the right information.

Additionally, supporting the design narratives and understanding the
information that is recorded, and tracking the reasons behind design choices is
very important.

- Early concept

- massing: multi-parameter solution space

- clarification/ tracking of site conditions, structural, and other
issues that will need to be considered from the onset of the
design

- Facilitating immersive design work**

- meeting constellation(s): recently-contacted list & key meeting
spheres superimposed

- content curation: suggesting best view mode, etc. for a specific
meeting type;

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 108

- **creation of curated meetings spheres (in detail)

- review current status of the design

- -search for people who are involved in a particular
subject

- latest-approved elements, people who are involved in
the decision-making in this particular element

- people who attended the last meeting, & minutes of the
last meeting on the subject

- PrismArch-wide design process analytics with AI inference

- What is the current status?

- How far are we from the contractual submission target?

- Keeping track of critical timelines with multiple disciplinary
inputs

- How has “Designer A” changed the model?

- How many assets has “Designer A” updated?

- Are there any points that the AI can identify that we need to
address?

- Access to information depending on the user status and/or
organisation, and IP protection.

- Smart Query Tool filtering system for enormous amounts of
information.

- AI-filtered search results

- Tagging

- assistance with the naming

- In-Line optimization

- a change in design parameter could trigger AI automation of
revisions, based on the completed workflow (ex. trimming of 50
slabs)

Question 7: Based on the example applications of Quality Diversity (QD) that
you saw and discussed in the last workshop, how would you
envision the use of QD in your discipline and across disciplines?

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 109

Some example features are the following:

- The system is used in order to analyze the design space and
provide the designer with a broad overview of the possible
solutions, across a number of behavioral dimensions.

- The user is able to interact with the system, by selecting
their preferred solutions or modifying existing solutions,
thus intervening in the evolutionary process.

- The system keeps track of the user’s interaction and learns
to make suggestions that are more suitable to the user’s
preferences.

ZHVR: Architects are curators of information, aimed toward a certain purpose. From
our perspective, the ideal focus of QD would be aimed at reducing and focusing
information for the numerous workflows and scenarios illustrated in D6.1, which
show how we process and present information.

We must answer the questions set out in this questionnaire in collaboration with
our technical partners, using the roadmap set out in D6.1 as a guide. To
determine the most appropriate location of AI inside PrismArch, we need to
know what the system records and how the libraries are structured.

The creation of spheres inside PrismArch is the core of the data organization
process. The ability to select, group, and sphere items, introducing a timestamp
and other associated data, should be made as intuitive as possible.
Representation and access to this evolving dataset is another field where we see
the need for AI assistance.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 110

Slide from AI Workshop ZHVR Presentation, showing basic functionality (PUI [personal
user interface] and QUI [query user interface]) needed for intuitive interaction by the
IH (immersed human) with the datasphere.

Additionally, we have identified that UI/UX for the datasphere is another
essential element of PrismArch where AI assistance is needed:

- customisation of personal workspace (so IHs don’t get information /
sensory overload)

- locating optimal representation (first-person user experience) for each
member of PrismArch

- presentation of 2D, 3D, or multiple media

- help with work basics: where did I leave “my desk” yesterday and where
do I want to start today?

The Key Parameters for UI/UX and sphering inside PA are:

- level of staff, team organisation

- the process of information optimisation / curation can be done
according to idiosyncratic disciplinary preferences.

- looking at information flows in teams and the collective (multi-
disciplinary) information flows

- i.e. Are there overlaps in functional roles?

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 111

o A.3: Responses from AKT II

i. Responses from Jeg Dudley (AKT II)

Question 1: Which (combined) characteristics of a design / solution do you find more
valuable to explore, especially during the initial stages of design? How do you
measure / assess those characteristics?

Answer by Jeg
Dudley (AKT II)

Cost:

For many of the smaller projects I’ve worked on, the cost of different design
options is critical to determine whether the entire project is viable or not (i.e.
these are not large structures in which there is more opportunity to, say, carry
out ‘value engineering’ by making the structure a percentage smaller).

Quantities:

However cost is difficult for structural engineers to quantify, so instead we
extract all of the factors that determine cost - i.e. area of material, material
thickness/ volume, length of element external edges (if the structure is formed
in metal, this characteristic directly determines another characteristic -
structural weld length). If the material is being bolted instead of welded, we can
start to roughly calculate the number of fixings needed.

In early stage of projects we often measure these through tabulated data exports
from quick digital models generated in Rhino, AutoCAD, or occasionally Revit
(though this is a slower software to use, so is less frequent in early stages). If the
model is in Rhino, it is highly likely that we use Grasshopper and computational
workflows to extract these quantities.

We might then compare the relative material quantities to generate very rough
estimates for relative ‘cost’ of different options.

Materiality:

Obviously in all of these studies we will also be considering different material
options - e.g. in Metal: weight of a steel vs aluminium option, in Timber: perhaps
Glulam option vs Laminated Veneer Lumber option, etc, etc.

We assess these via material tables describing the structural properties of these
materials. Note that many materials have different grades/ sub-grades/ mixes/
etc which can subtly or significantly affect the material performance - e.g.
different grades of concrete.

On very rare occasions, the structural behaviour of a material is not fully
understood when we join the project, and so we undertake physical testing of
small material samples to determine its characteristics. The results of these tests
then feed back into our digital structural analysis models.

Structural Analysis:

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 112

In all of our projects we are assessing the basic structural behaviour of design
options: the deflection under different loading conditions:

- self weight

- weather and environmental loads: wind, snow, seismic, etc

- Live loads from people, equipment, furnishings, etc

Also the utilisation of the material - i.e. what percentage of the material is being
used to carry the load, which tells us how efficient the sizing of elements is and
also how close they are to capacity.

There are many more structural factors considered - however I will let the
structural engineers in our team comment on those. Please see questionnaire
responses by Edoardo Tibuzzi and Joel Hilmersson.

Fabrication:

We also work on many ‘non-standard’ structures - e.g. those with unusual forms,
irregular shapes, etc. Many of these structures are prefabricated by specialist
fabricators, who are the only parties with either the expert fabrication
knowledge and/ or fabrication equipment needed to produce these works.

So it is critical to determine how these structures are transported to site: i.e. how
the structure could be broken into separate pieces for transport and on-site
erection (segmentation/ discretisation of the form and/or size on truckbeds and
within shipping containers, etc).

These factors also relate to the weight of the overall structure and/ or separate
pieces, and thus whether they can be moved from factory to site via cranes,
hiabs/ lorry loaders, forklifts, etc.

The weight and unusual centres-of-gravity will also factor into how the pieces
must be supported in the temporary condition - i.e. before the whole structure
is assembled and it is self-supporting. In the temporary condition systems like
scaffolding, timber props, cranes, etc can be used to support the forms. In
general, as structural engineers we are not responsible for designing the
temporary works - but this is a requirement on some projects.

Carbon:

We are increasingly focusing on the embodied carbon of design options as well,
which encompasses a vast array of characteristics - the carbon generated in
producing a raw material, forming it, transportation, maintaining the material
through a structure’s duration, and in reusing or recycling it at the end of a
structure’s lifespan.

These must also be balanced against the material’s inherent physical
characteristics - for example, it’s thermal transmittance - which might mean that
it has high embodied carbon, but it results in less heating and cooling of a
structure throughout its lifespan, and so less carbon is generated overall.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 113

Question 2: If the characteristics that you use to explore the solution space are difficult to
quantify, could you attempt to describe them in qualitative terms? Are there
any quantifiable characteristics that they relate to, even indirectly?

Answer by Jeg
Dudley (AKT II)

See Q1.

Question 3: What are the most critical constraints that are imposed on your discipline by
other disciplines?

Answer by Jeg
Dudley (AKT II)

We are often constrained by characteristics related to maximum acceptable
floor depths (perhaps in office or residential projects), facade buildups, and
generally sizing of structural elements/ volumes within a building.
These factors are understandably driven by a set of commercial imperatives:
balancing number of floors vs usable area per floor vs distance from the cores
(i.e. circulation lifts and stairs) vs density of the structural grid and size of
columns/ shear walls in that grid, etc, etc.
In relation to architectural collaborators, we are often asked to ensure
uninterrupted spans in buildings - i.e. avoiding columns or other vertical
structures that would disrupt the movement of users, or block sightlines. To
achieve these spans, we must often increase the structural depth of elements
above, which in turn affects those floor depths mentioned above. So the entire
collaboration is a compromise between these factors.

Question 4: What are the most critical constraints from your discipline that you
feel other disciplines should respect?

Answer by Jeg
Dudley (AKT II)

Because our collaborators from other disciplines understand that structural
engineering is vital to ensure that buildings stay up, and do not harm anyone, in
general they are very respectful of our constraints, just as they are the
requirements from building regulations.

All of our collaborators’ questions or issues usually just relate to ensuring that
the building is working as ‘hard’ as possible - i.e. that there is no potential to
reduce material costs or increase spans anywhere, that might reduce carbon
emissions, bring the cost down, or accelerate/ simplify construction.

Question 5: Answer to Question 5, by Jeg Dudley (AKT II)

Answer by Jeg
Dudley (AKT II)

See Q1.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 114

Fabrication Optimisation

Once we are at the stage of optimisation, we might be looking to ‘regularise’
elements in some way - perhaps by making all of the connections in a structure
conform to one of a limited set of different typologies (number of connection
into the node/ angle of the connections/ material/ etc), or by making all of the
member lengths identical/ one of a limited set of different sizes

Because we work on many non-standard structures, we also encounter many
issues related to ensuring planarity of elements. So this relates to simplifying
forms and ensuring that wherever possible we are making forms from their
planar sheet materials, and if needed cold forming them to slightly-curved
forms, rather than utilising expensive hot forming solutions.

Structural Optimisation

We do many types of structural optimisation - some of the most basic being
automated selected of section profiles from a pre-determined groups of options,
assigned based on FEA analysis.

Question 7: Answer to Question 7, by Jeg Dudley (AKT II)

Answer by Jeg
Dudley (AKT II)

This is a difficult question, but the later two examples you state in the
question intuitively feel more suitable for the types of (very highly
dimensional) problems we encounter:

- (1) “The system keeps track of the user’s interaction and learns
to make suggestions that are more suitable to the user’s
preferences.”

- I could imagine that for certain types of problems we encounter
on projects, their ‘configuration’ for that project is so specific that
potentially we cannot apply any tools ‘trained’ on the data/
configurations of previous projects. In this scenario, the ability to
allow the user to follow their own design experience and
knowledge in order to generate viable design options - and then
use those ‘solutions’ to train the current system - could be very
powerful.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 115

- (2) “The user is able to interact with the system, by selecting their
preferred solutions or modifying existing solutions, thus
intervening in the evolutionary process.”

- Even applying the ideas in (1) above, it seems likely that - even
just in the first few iterations - the system will still not be
generating ideal/ viable options, and thus giving the user the
ability to at any stage step into the process and redirect the
ongoing evolution seems very sensible.

Exploration of Non-Geometric Design Spaces

As stated previously, some of the most significant challenges posed in
projects are related to the logistics of cross-disciplinary collaboration:
sharing and maintenance of communications - sketches, site photos,
reports - as well as the expected digital models and drawings.

Any Tools that can highlight when these resources are not being used
optimally would be hugely beneficial across the lifespan of a project.

Examples:

- Offer suggestions to tag and/ or attach documents/ emails/
sketches to an item that the system has flagged as related.

- Tag prior iterations of a design artifact to the current version.

- XXX

- XXX

Model Synchronisation and Diffing

As a more general topic: Something that emerges naturally from the
multi-disciplinary design process is the complexity of ensuring that the
(necessarily) abstracted structural analysis model is an accurate
reflection of the architectural model. Problems arise if one of these
models is changed, and that does not carry through to the other. There
might therefore be value in producing tools to highlight when elements
have changed substantially enough in the architectural model to
potentially need adjustment in the structural version too.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 116

ii. Responses from Edoardo Tibuzzi (AKT II)

Question 1: Which (combined) characteristics of a design / solution do you find more
valuable to explore, especially during the initial stages of design? How do you
measure / assess those characteristics?

Answer by
Edoardo Tibuzzi
(AKT II)

The main characteristic we are exploring in the initial stages of a design are
Sustainable outputs, Cost and structural performance. We use simulation
software combined with designer experience to evaluate these parameters both
in isolation and then combine them to identify potential options to pursue in the
latter stages.

Question 2: If the characteristics that you use to explore the solution space are
difficult to quantify, could you attempt to describe them in
qualitative terms? Are there any quantifiable characteristics that
they relate to, even indirectly?

Answer by
Edoardo Tibuzzi
(AKT II)

The Charateristics above are all quantifiable. More precisely in respect to cost
and sustainability, their values are fluctuating, but we still can use their outputs
as a qualitative indicator to where the project is directed.

Question 3: What are the most critical constraints that are imposed on your
discipline by other disciplines?

Answer by
Edoardo Tibuzzi
(AKT II)

Critically, cost is the main driver in the process and structure being a primary
fundamental part of the project is directly constrained by it.

Architecture requirements are imposing geometric constraints to the structural
model and often are locking non optimal solutions to the benefit of the
architectural performance.

MEP requirements often impact structural elements requiring openings and
increasing the structural element size and cost.

Site physical constraints are also a big influencer, ground condition, existing
services etc are for example influencing structure element position or
maximum loading allowed etc.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 117

Question 4: What are the most critical constraints from your discipline that you
feel other disciplines should respect?

Answer by
Edoardo Tibuzzi
(AKT II)

Respect site constraints, fire requirements, seismic requirements,
performance requirements.

Question 5: What are the most important features of a design / solution that
your discipline attempts to optimize?

How can you measure / assess those features?

Answer by
Edoardo Tibuzzi
(AKT II)

One of the most important features is structure weight. By optimising weight
generally cost and sustainability are optimised subsequently. We use
parametric tools connecting geometry and structural simulation to do so.
Often also we require mocking up physical testbeds, running performance
testing on them and analysing data to push performance further.

Question 6: If the optimization process occurs through an abstract / subjective
process of refinement, could you attempt to describe it? Are there
any quantifiable characteristics that it relates to, even indirectly?

Answer by
Edoardo Tibuzzi
(AKT II)

The process is often driven by cost appraisal, we use the limits constrained by
client budget to assess the structural impact and then provide alternatives that
combine different structural options, different grid opportunities (Spacing
between structural elements) and when those constraints are matched with
architectural and MEP ambitions we go into the finer refinements of structural
material optimisation as described in the answer Q%

Question 7: Based on the example applications of Quality Diversity (QD) that
you saw and discussed in the last workshop, how would you
envision the use of QD in your discipline and across disciplines?

Some example features are the following:

- The system is used in order to analyze the design space and
provide the designer with a broad overview of the possible
solutions, across a number of behavioral dimensions.

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 118

- The user is able to interact with the system, by selecting
their preferred solutions or modifying existing solutions,
thus intervening in the evolutionary process.

- The system keeps track of the user’s interaction and learns
to make suggestions that are more suitable to the user’s
preferences.

Answer by
Edoardo Tibuzzi
(AKT II)

-

o A.4: Responses from Sweco

Question 1: Which (combined) characteristics of a design / solution do you find more
valuable to explore, especially during the initial stages of design? How do you
measure / assess those characteristics?

Answer by
Dinos Ipiotis
(Sweco)

In Building Services can be several things. From finding best routes with less
frictions, calculations of spaces and clearance areas, effective arrangement of
services in corridors and/or risers to more simple solutions which may include
user interface adjustment based on the user and effective search tool based on
specific criteria.

Question 2: If the characteristics that you use to explore the solution space are
difficult to quantify, could you attempt to describe them in
qualitative terms? Are there any quantifiable characteristics that
they relate to, even indirectly?

Answer by
Dinos Ipiotis
(Sweco)

Further discussion needed in quantification to better understand the question.
We have a separate section in BIM which involves quantification so not sure
what this question relates to.

Question 3: What are the most critical constraints that are imposed on your
discipline by other disciplines?

Answer by
Dinos Ipiotis
(Sweco)

We are driven by decisions made by other consultants such as structural
engineers and architects. We need constant collaboration to coordinate our
services and save costs from errors happening in the construction site. Often,

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 119

we need to request changes from the other two disciplines which are discussed
and agreed. Tolerances are always under discussion and taken under
consideration.

Question 4: What are the most critical constraints from your discipline that you
feel other disciplines should respect?

Answer by
Dinos Ipiotis
(Sweco)

The need for space for installation and maintenance purposes. This may include
plant areas, corridor ceiling voids, apartment ceiling voids or even roof space for
installation and maintenance of units.

Question 5: What are the most important features of a design / solution that your
discipline attempts to optimize?

How can you measure / assess those features?

Answer by
Dinos Ipiotis
(Sweco)

Sizing and balancing of systems aiming on the most cost effective and
sustainable solution with use of the right materials. There are a number of ways
in a simulating environment to assess and evaluate the solution based on
software specialized to perform these simulations.

Question 6: If the optimization process occurs through an abstract / subjective process of
refinement, could you attempt to describe it? Are there any quantifiable
characteristics that it relates to, even indirectly?

Answer by
Dinos Ipiotis
(Sweco)

Need more input on this to understand the question, however I would say that
any abstract / sunjective process of refinement is dealt within the digital
environment performing necessary tasks to mitigate it and reevaluate our
solution. Aim is to spend as much time as possible in a simulating environment
to prevent errors while construction or operation of the services

Question 7: Based on the example applications of Quality Diversity (QD) that
you saw and discussed in the last workshop, how would you
envision the use of QD in your discipline and across disciplines?

Some example features are the following:

D2.1 Initial version of parametric design space PrismArch 952002

Filename: PrismArch_D2.1_1.0 Page 120

- The system is used in order to analyze the design space and
provide the designer with a broad overview of the possible
solutions, across a number of behavioral dimensions.

- The user is able to interact with the system, by selecting
their preferred solutions or modifying existing solutions,
thus intervening in the evolutionary process.

- The system keeps track of the user’s interaction and learns
to make suggestions that are more suitable to the user’s
preferences.

Answer by
Dinos Ipiotis
(Sweco)

5. The system is used to provide effective UI to the logged in users

6. The system can perform smart search based on the given
keywords and present relevant results which will be driven from
the user interactions

7. The system can propose design solutions after given a set of
parameters and restrictions

8. The system can identify potential coordination errors and
highlight to the user

9. The system keeps track of interactions, learn from them and
adapt the experience to better suit the user’s needs. This may
contain predefined scenarios for the user to choose while logging
in (e.g. coordination scenario, design scenario etc)

