

PrismArch

Deliverable No D5.1

First version of architectural design and integration protocol

Project Title: PrismArch - Virtual reality aided design blending cross-disciplinary

aspects of architecture in a multi-simulation environment

Contract No: 952002 - PrismArch

Instrument: Innovation Action

Thematic Priority: H2020 ICT-55-2020

Start of project: 1 November 2020

Duration: 24 months

Due date of deliverable: 31 May 2021

Actual submission date: 4 July 2021

Version: 1.0

Main Authors: Dimitrios Ververidis (CERTH), Vittorio Bava (Mindesk), Gabriele

Sorrento (Mindesk)

Project funded by the European Community under the H2020

Programme for Research and Innovation.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 2

Deliverable title First version of architectural design and integration protocol

Deliverable number D5.1

Deliverable version Final

Contractual date of delivery 31 May 2021

Actual date of delivery 4 July 2021

Deliverable filename Prismarch_D5.1_FirstV_ArchDesign_Integration.pdf

Type of deliverable Report

Dissemination level PU

Number of pages 38

Workpackage WP5

Task(s) T5.1

Partner responsible MINDESK. Contributors: CERTH

Author(s) Dimitrios Ververidis (CERTH), Vittorio Bava (Mindesk), Gabriele

Sorrento (Mindesk)

Editor Spiros Nikolopoulos (CERTH)

Reviewer(s) Edoardo Tibuzzi (AKT), Arun Selvaraj (SWECO)

Abstract A roadmap for the developments of PrismArch platform, including

a draft of the envisioned system architecture, a technical overview

of the different modules (WP2, WP4), a timeline, and dependency

map.

Keywords System design, integration roadmap, components definition

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 3

Copyright

 © Copyright 2020 PrismArch Consortium consisting of:

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH)

2. UNIVERSITA TA MALTA (UOM)

3. ZAHA HADID LIMITED (ZAHA HADID)

4. MINDESK SOCIETA A RESPONSABILITA LIMITATA (Mindesk)

5. EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH (ETH Zürich)

6. AKT II LIMITED (AKT II Limited)

7. SWECO UK LIMITED (SWECO UK LTD)

This document may not be copied, reproduced, or modified in whole or in part for any purpose

without written permission from the PrismArch Consortium. In addition to such written permission to

copy, reproduce, or modify this document in whole or part, an acknowledgement of the authors of

the document and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

Deliverable history

Version Date Reason Revised by

0.1 17/03/2021 Table of Contents Dimitrios Ververidis (CERTH)

0.2 14/5/2021 Study on the technical requirements

(Section 2)

Dimitrios Ververidis (CERTH)

 0.3 5/6/2021 Technical requirements dependency

map (Section 2)

Vittorio Bava (Mindesk)

0.5 20/6/2021 Architecture Design (Chapter 3) Gabriele Sorrento (Mindesk)

0.9 30/6/2021 Integration and Testing (Chapter 4) Dimitrios Ververidis (CERTH)

1.0 3/7/2021 Review and edits Spiros Nikolopoulos (CERTH),

Edoardo Tibuzzi (AKT), Arun

Selvaraj (SWECO)

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 4

List of abbreviations and Acronyms

Abbreviation Meaning

AB Advisory Board

CA Consortium Agreement

DR Deliverable Responsible

EC European Commission

GA Grant Agreement

IP Intellectual Property

IPR Intellectual Property Rights

PC Project Coordinator

PHP PHP: Hypertext Pre-processor

SBM Supervisory Board Member

ToC Table of Contents

UML Unified Modelling Language

QMR Quarterly Management Report

WP Work package

WPL WP Leaders

AEC Architecture, Engineering and Construction

AR Augmented Reality

BIM Building Information Modelling

CAD/CAM Computer-Aided Design & Computer-Aided Manufacturing

ICT Information and communication technology

NDA Non-Disclosure Agreements

SME Small and Medium-sized Enterprises

UG User Group

VR Virtual Reality

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 5

Executive Summary

The role of D5.1 is to transform the user requirements posed by D1.1 and the scenarios described in

D6.1 into a unified and sound technical blueprint. The user requirements have been studied and

classified into categories that allows for their correlation and their positioning in an inter-dependency

graph. The additional user requirements that were not foreseen in the Grant Agreement have been

added to the overall plan. Third party software libraries are selected and inserted into the overall

architecture of the system. A technical design with a topology of servers and services is proposed, and

it will be used as a blueprint for the implementation of the system. Apart from the partners involved

in the project, we have collaborated with Speckle Systems, an EU company that offers a platform that

achieves asynchronous collaboration for several AEC disciplines across the most popular onscreen

CAD, CAE and BIM software via a common web-based database. Towards this end, PrismArch is

developing and integrating a VR solution with the help of Mindesk in the pipeline of Speckle so that

VR can be also a ubiquitous real-time synchronous design and collaboration tool.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 6

Table of Contents

1. Introduction 7
2. Transforming user requirements to technical requirements, and addressing use case scenarios 8

2.1 Summarization and categorization of user requirements 8

2.2 Technical requirements 9

2.3 Prioritization 19

2.4 External software 20

3. System Architectural Design 21
3.1 Masterplan 21

3.2 Data-flow design 23

3.3 Merging changes done Asynchronously 24

3.4 Implementation diagram 26

4. Integration and verification methodology 30
4.1 Scope, goals, and the verification model 30

4.2 Test Phases 31

4.3 Issue Reporting Cell 33

References 35
Appendix 36

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 7

1. Introduction

D5.1 aims to analyse the technical requirements, provide an architectural design of the platform, and

define the integration procedure and unit testing protocol. A novel architecture system design is

proposed that divides AEC disciplines collaboration in two modalities, namely the Synchronous and

Asynchronous Collaboration modalities. These two modalities are expanding what it is considered

today as collaboration with IT technologies in the field of 3D design for CAD, CAE and BIM.

The outline of this deliverable is as follows. First, in Section 2, the requirements posed by AEC

disciplines in Deliverable D1.1 and D6.1 are categorized, prioritized, and correlated to find synergies

among requirements. In Section 3, various diagrams are overlaying the logic, the technologies, the

architecture and the timeplan for the developments of the system. Finally, specific pathways for

developments, unit testing and integration of technologies per each WP are defined in Section 4.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 8

2. Transforming user requirements to technical requirements, and

addressing use case scenarios

The aim of this section is to transform user requirements into technical requirements. Therefore, we

provide a categorization, a correlation, a prioritization, and an implementation methodology of the

requirements as it was posed by AEC specialists in D1.1 Requirements definition, while in parallel

taking into consideration the use case scenarios as proposed in D6.1 Use case scenarios.

2.1 Summarization and categorization of user requirements

In this section we repeat some of the information given in Deliverable D1.1 - Requirements, and we

divide requirements into 3 main types, as described below:

A) Management tools: tools that will arrange the coordination among AEC users and teams;

B) Information tools: Tools that provide structure to the flow of information.

C) Design tools: tools that will allow the disciplines to interact with the 3d objects.

D) Visualization tools: tools to customize user viewing capabilities;

Below we give an overview of the tools that belong to each type. The Management tools are and are

described in Table 1, the Information tools are shown in Table 2, the Design tools can be found in

Table 3, and Visualization tools are found in Table 4.

Table 1: Management Tools

A. Management Tools

1. Admin tool (Project

Settings)

Managing the access privilege, create discipline-based defaults and settings,

edit project schedule, and set tasks

2. Contact /

Communication tool

Integration of present-day networkability and communication channels into

the VR environment

3. Multi-presence

on-boarding system

Managing interactions inside a multi-presence immersive space

Table 2: Information tools

B. Information Tools

1. Dashboard Tool A one-stop reference for coordination purposes

2. List Maker Tool Organizational efficiency

3. Speech to text typing

tool

Integration of present-day networkability and communication

channels into the VR environment

Table 3: Design tools

C. Design Tools

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 9

1. Tagging Tool Flexible data management system for tracking data inside

PrismArch

2. Query Tool Allowing users to isolate relevant assets from the totality of project

information

3. Multi-selection Tool Allows for highlighting, grouping, isolating, showing/hiding objects

4. White Board Tool Whiteboard inside VR space, to be able to pin reference images for

individual use, or to share during meetings

5. Spatial Orientation Tool To assist the immersed users with wayfinding inside the project

6. Design Support and

Evaluation Tool

Assists with spatial planning and evaluation

7. Commenting Mark-Up

Tool

This is a helpful way to keep track of comments and quickly

exchange ideas inside the virtual environment.

Table 4: Visualization tools

D. Visualization Tools

1. Toggle Camera

Perspective Tool

Allowing user to view the project from several key perspectives repeatedly

without having to travel to them each time

2. Toggle-View

Mode Tool

Allowing different ways of viewing and reviewing 3D assets, each suitable

for a distinct work activity

3. Clipping Plane Tool Provides ability to see and evaluate the cross-section of a 3D construction

2.2 Technical requirements

After a careful study on the user requirements of Section 2.1 and the use case scenarios of D6.1, we

have assembled a technical blueprint as depicted in Figure 1 and explained in the following lines.

Overall, the user requirements are describing a VR metaverse for AEC disciplines where they can

assemble teams and work in one collaborative environment in real-time. Basic questions, written with

blue, formulate the user contextualization of the system. The first basic question is “How to enter the

system?”. This is achieved through the executable of the application which is an .exe file for Windows,

and a respective file for Mac OS systems. Towards this end, we are using the Unreal Engine which is

able to compile the developed code into several platforms such as Windows, Mac, Android, iOS,

Playstation and others [Unreal Engine CrossPlatform]. The next question from the user perspective is

“Where am I?”. Two types of scenes are defined, namely the “Lobby scene” where it is a preparation

space for assembling teams and assigning tasks before delving into the 3D model; and the “Cospace

scene” where users can actually design and collaborate. The next contextualization question is “How

to adapt the system to me?”. The core of user requirements and use case scenarios is a Personal

Sphere which contains all the necessary tools for the user. This personal sphere is the back-pack of

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 10

the user and can be used both in Lobby and Cospace with proper contextualization for the tools to be

shown in each space.

Figure 1: Overall alignment of the user requirements into a technical requirements dependency diagram.

During the initial developments, a mockup for the Personal Sphere was made inside Unreal Engine as

shown in Figure 2. It presents the Lobby scene with the UI of the Personal Sphere which allows the

user to do setup actions (left sidebar), Manage Projects and Data (central-upper panel), get

information about the todo Tasks (central-lower panel), and the Communications panel (right panel).

In the following we describe one by one the technical requirements that were depicted in Figure 1. In

this section the naming of the requirement is provided. We provide a numbering that should be used

for identifying the requirement, e.g. a.1 Setup Tools - Registration and Login. This numbering should

be used for reporting issues according to the Issue Reporting Cell found in Section 4 - Integration and

testing.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 11

Figure 2: First developments in Unreal Engine 4.

a. Setup tools

The setup actions are the basic actions for any content management system but transferred into the

dimensionality of VR. It involves User Account Management actions such as Register and Login; User

Interface configuration actions such as User Preferences saving and Avatar Configuration; Team roles

assignment and Privileged Groups (Sphere Levels, see D6.1), and participants per Sphere Level.

According to Speckle terminology:

a) An Architectural Project is a “Stream”

b) Each discipline works in a “Branch” of a Stream

c) The Main Branch is the Architectural design (otherwise not possible to work fluently)

d) Each insertion of data in the database is a “Commit”.

These are analysed in the following.

a.1 Registration and Login: The registration allows the existence of the user in the database.

It is a required step to assign an id to the user. We will exploit the existing structure of Speckle

server [Speckle Server] and Speckle GraphQL API [Speckle GraphQL API] in order to achieve

this functionality through VR. Currently required fields are full name, username, mail, and

affiliation. We will use the GraphQL mutation functionality to extend it with more fields such

as discipline and team name.

a.2 User preferences save: Users can save their preferences regarding the setup of the VR

environment, preferred UI tools, active tools and inactive tools. Again, GraphQL Mutation API

will be used for storing these preferences in the user entity.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 12

a.3 Avatar configure: Users can configure their appearance in 3D space. In this phase the

appearance will be the preferred 3D model, and the colours of the 3D model. Again, GraphQL

Mutation API will be used for storing these preferences in the user entity of Speckle.

a.4 Team roles assignment: Here is performed the user account management. The overall

entity for an Architectural Project is called a “Stream”. The Stream creator is by default

Administrator and assigns other Administrators, Collaborators, and Observers of the project.

The observers by default will not have editing tools in their Personal Sphere. The

aforementioned roles are already defined in Speckle but we will seek to define teams per

discipline. The Sphere Level of Accessibility is a request of D6.1. This ontology will define what

will be visible by who. The administrator will configure to which Sphere Level each user will

belong. The 5 Sphere Levels are delineated in Table 4.

Table 4: Sphere Levels

Sphere
Level

Sphere Level
1:
Personal

Sphere Level

2:

Team

Sphere Level 3:

Professional

Sphere Level

4: Client -

Review

Sphere Level
5: Public

Data
rights

Only the
owner of the
change can
see the
change

Only a team
members
can see the
change

All disciplines
but the client
can see the
changes

The
information
will be visible
by the actual
clients.

The
information
will be visible
by anyone.

Editing
Tools
rights

Discipline
specific

Discipline

specific

Discipline

specific

No editing No editing

a.5 Project initialization and management: This is where an Architectural Project, namely a

“Stream” can be generated and managed.

B. Progress tools

These tools are driving the users on how to contribute to the architectural project, which parts to be

responsible for, which conflicts to resolve, and to provide deadlines for each task. Contextually it

answers the question “What should I do next?” and also it is part of the question “What is the

usefulness of the system?”. In order to incorporate the AS-IS scenarios (see D4.1 Interconnection), the

Asana management tool has been selected to be incorporated. Thus, the onscreen users can also have

accessibility to the system without the need to enter in VR. The tools are related to the previously

mentioned tool a.4 Team roles assign which is based on the Speckle tool. Ideally, the information

about teams should flow bidirectional among Asana [Asana] and Speckle. However, since the

integration of Asana API inside Unreal is a task of high effort that was not foreseen in the GA, Asana

can be integrated with a Chromium Web Browser Component entity inside Unreal Engine to avoid

allocating too much resources on this task. Overall, the technical requirements are described in the

following.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 13

b.1 Dashboard tool: It is the briefing of the current project status. It informs the user for the

project update, who is now in the system, and about the overall status of the project. It will

be based on the Asana tool and the Epic Online Services (EOServices) for finding the users

immersed in the system.

b.2 Tasks assign: It is the interface and back-end system for assigning tasks to collaborators.

This will be again based on Asana as it provides a full-fledged system for these actions.

b.3 Schedule tasks: It is the time definition for tasks completion. Again, Asana will be used for

this action.

b.4 List maker tool: It is a list of notes of what a user has to do next in the system. This will be

based on Asana as it offers this feature.

C. Cross-communication tools

In this category belong two tools.

c.1 Asynchronous communication tools: It is a Mail client tool that can be connected to the

mail addresses of the user. It is a standard mail client but adjusted for VR environments. We

will be based on [Email UE4 plugin] where everyone can connect it with his/her mail server.

c.2 Synchronous communication tools: It is a telecommunication tool for real time chatting,

especially useful for communicating to the users that are using onscreen software. Candidate

tools are [Vivox] and [Discord]. Vivox is a widely used platform for communication in 3D

games. For the integration of Vivox, we will use the [Vivox Core] and [AVRF Vivox Core plugin].

For the integration of Discord, we will use the [Discord SDK] and [Discord-UE4 integration

software].

D. Input methods

Input methods define the way that the user interacts with the system. There are three methods:

d.1 VR Controllers: They are the most reliable way that the user can interact with the system.

HP Reverb G2 controllers and Oculus Quest 2 controllers are two reliable types of controllers

that are constantly used during the developments of PrismArch.

d.2 Gesture Recognition: Gesture recognition by Oculus Quest 2 headset is an alternative way

of interacting with the system. Although it is not as robust as the VR controllers, it is mature

enough to be used in the project. Unreal Engine already supports the input through Oculus

Quest 2 gestures SDK by defining the type of gesture in its “Project Settings - input” item.

d.3 Speech Recognition: Although it is not yet implemented by any vendor, it is also posed as

a requirement in D1.1. We will examine the Vivox speech recognition feature, as well as the

Web API for speech recognition through Mozilla Voice Open-source technologies [Mozilla

Voice]. Mozilla provides pre-trained models as well as Speech data and machine learning

software to train new models.

E. Design tools

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 14

Design tools are divided into four types.

Orientation and Space alteration tools are tools that allow the users to perceive the space and the
information they are interested in. Such tools are:

e.1. Spatial Orientation Tool: It allows the user to navigate easily into space, e.g. into certain
bookmarked spots, and see what others have done into the certain space. We will be based
upon the Advanced VR framework (AVRF) as it provides a way to view the space into a map,
to navigate to certain spots and view where the teammates are [AVRF]. Two screenshots of
AVRF are shown below. It offers 2D and 3D mapping with users’ tele-view and teleportation.

Figure 3: Exploiting AVRF in PrismArch for teleportation, team inspection, and mapping.

e.2 Toggle view mode: Allowing different ways of viewing and reviewing 3D assets, each

suitable for a distinct work activity. Examples of viewing modes are white clay mode (Default);

Colour coded mode (tagged groups shown in different colours); photo-realistic mode;

wireframe mode; xray / ghosted mode; technical mode; simulation mode (point cloud and

scan data); Raytracing on/off. Users can save the scene/level contents and load the level

contents and materials when they need them. Here we will base our efforts in AVRF and

CollabViewer Unreal template by EPIC as they partially support these features, and enhance

it where necessary [CollabViewer Unreal template]. Screenshots of AVRF with respect to

toggle view mode are shown below.

(a) AVRF material change (b) CollabViewer Explode mode

Figure 4. Changing views for selected objects. CollabViewer also supports xray mode.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 15

e.3 Toggle Camera Perspective Tool: Allowing the user to view the project from several key

perspectives repeatedly without having to travel to them each time. This can be achieved with

the help of the CollabViewer template as it allows to place bookmarks in certain spots and

select these bookmarks via its VR Head Up Display as in Figure 5 “Bookmark”.

Figure 5: The HUD of Collabviewer. Upper left is the bookmark option to select spots for
viewing.

e.4 Clipping Plane Tool: Provides ability to see and evaluate the cross-section of a 3D

construction. This allows the user to view a cross-section of a building. It can be achieved with

binary operations inside the Unreal Engine.

Information tools

The next subcategory of Design tools is Information Tools, namely they are tools that are used for

extrapolating or retrieving information about the building. Four tools can be found in this category.

e.5 Commenting / Markup tool: It allows the user to draw annotations on the building. This

is a helpful way to keep track of comments and quickly exchange ideas inside the virtual

environment. We will base our efforts onto the CollabViewer Paint tool and the 3D Paintbrush

of AVRF tools as shown in Figure 6. Also, in PrismArch we develop a note tool for writing letters

as annotation.

(a) (b) (c)

Figure 6: Paint tool of CollabView (a,b) and 3D Paintbrush tool of AVRF (c) allows to annotate the
design.

e.6 WhiteBoard tool: Whiteboard inside VR space will allow the user to pin reference images
for individual use, or to share during meetings. We will base our efforts on AVRF as it offers
these functionalities as shown in Figure 7.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 16

(a) Screenshot capturing (b) Pallet for extrapolating images

Figure 7: The Whiteboard tool of AVRF will be used in PrismArch.

e.7 Tagging Tool: Flexible data management system for tracking data inside PrismArch. The

tagging tool will be based on Speckle data objects notation which is an extendable way to

store 3D information with metadata across major architectural and engineering software.

More information about Speckle can be found in D4.1. As regards the interfaces of the tagging

tool, we will exploit the interfaces provided by AVRF such as the “Details display” (Figure 8),

the “Radial Menu”, and the “smartwatch with tablet” interfaces (Figure 9).

Figure 8: Details display of AVRF.

Figure 9: The radial menu and the smartwatch with table offer enhanced interfaces for the tagging
tool.

e.8 Query Tool: The query tool allows to retrieve information from the database where all
changes are stored. The database that will be used is the one offered by Speckle as it was
described in D4.1. The way data is retrieved is accomplished through PrismArch Semantics

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 17

service, namely the Knowledge base which is based on RDF triplets (see D4.1) accessible
through a REST service (see Table 5, more details in Section 2 Architecture). In this manner
the users in VR can retrieve information about an object across all commits. As regards the
interfaces, the AVRF will be used as it offers the radial menu as shown in Figure 10 which can
be exploited to interrogate an asset.

Figure 10: Manipulation of information inside VR with AVRF.

Table 5: Examples for calling REST API for Semantic content retrieval from the Knowledge Base.

Action POST COMMAND

Fetch history for a
project (commits ids)

curl -d "{}" -v -H "Content-Type: application/json" POST
http://160.40.49.211:8080/Prismarch_RetrieveKB/commitHistory

Fetch history for a
certain room, e.g. Bath
(commits array)

curl -d "{ 'type': 'Bath' }" -v -H "Content-Type: application/json"
POST http://160.40.49.211:8080/Prismarch_RetrieveKB/room

Fetch certain
parameter for an object
based on its id

curl -d "{'objectId': '37902f721d1e6aff15d18274e67ee838' }" -v -H
"Content-Type: application/json" POST
http://160.40.49.211:8080/Prismarch_RetrieveKB/cost

Fetch designers that
edited an object with a
certain id

curl -d "{'objectId': '4107cee86039468eafec9596548ba605' }" -v -H
"Content-Type: application/json" POST
http://160.40.49.211:8080/Prismarch_RetrieveKB/authorHistory

Design tools

e.9 DToolbox: The design toolbox will be based on creating geometries and moving them

accordingly in 3D space. Mindesk tools will be used in conjunction with AVRF tools. The

interfaces of AVRF tools are shown in Figure 9. The geometries that we are going to support

are those offered by Speckle software.

http://160.40.49.211:8080/Prismarch_RetrieveKB/commitHistory
http://160.40.49.211:8080/Prismarch_RetrieveKB/commitHistory
http://160.40.49.211:8080/Prismarch_RetrieveKB/commitHistory
http://160.40.49.211:8080/Prismarch_RetrieveKB/room
http://160.40.49.211:8080/Prismarch_RetrieveKB/room
http://160.40.49.211:8080/Prismarch_RetrieveKB/cost
http://160.40.49.211:8080/Prismarch_RetrieveKB/cost
http://160.40.49.211:8080/Prismarch_RetrieveKB/cost
http://160.40.49.211:8080/Prismarch_RetrieveKB/authorHistory
http://160.40.49.211:8080/Prismarch_RetrieveKB/authorHistory
http://160.40.49.211:8080/Prismarch_RetrieveKB/authorHistory

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 18

Figure 9: Interfaces for design by the AVRF tools.

e.10 Design Support and Evaluation tool: It is a collection of support tools for design such as:

Measuring floor areas and volumes with indication of x,y,z values (Mindesk’s annotation-style

or tool can be called inside the platform), alternatives for the measurement tools are AVRF

(Figure 10a) and Collabviewer (Figure 10b); Bounding box (the same logic to box selection tool

in the Multi selection tool) but with the x, y, z values and area/volume annotations; Circulation

routing, (e.g. drawing spline route and user object follows the route); Smart staircase

modelling; Toggling measurement resolution (mm, cm, m km) to explore measurement

resolution; Toggling measurement system - decimal and imperial (feet and inches); When

measurement resolution changes, users can see the changes by using the floor grid size or any

reference object size change.

(a) (b)

Figure 10: Measurement tool (a) by AVRF; (b) by Collabviewer template.

e.11 AI tools: The idea is that AI tools will give suggestions for design inside VR. More

Information about AI functionalities can be found in D2.1. The AVRF tools will be exploited as

interfaces. The functionality will be offered by WP2 through a C# modules that will be

translated for Unreal with [CLR] extension.

e.12 Multi-Selection tools: Allows for highlighting, grouping, isolating, showing/hiding

objects. These tools follow the Rhino3D methodology of selecting objects such as: Box

selection method; Users can assign and save tags for single or multiple selected objects for

future reviews; Grouping objects; a single object or multiple objects are selectable or

highlightable via the Unreal Engine custom-depth/post process, etc.); The highlighting colours

are discipline specific; Multiple selected objects can be grouped, ungrouped, inverted, shown

and hidden. The selection tools will be based again on AVRF tools (Figure 8) with the proper

extension when needed.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 19

2.3 Prioritization

In the following we prioritize the requirements according to what was promised in the GA and
according to what it is easy or difficult to achieve.

Table 6: Technical requirements prioritization

Task Priority In
GA?

Comments

High Priority

Database
interconnection
for Asynchronous
collaboration
(Speckle)

It is highly prioritized
because it allows a joint
place to save edits

No Asynchronous collaboration was not
foreseen in GA as it was dealing only
with synchronous collaboration through
the Mindesk plugin. All changes were
assumed to be saved within Revit but
not to a central server database.
However, it is going to be integrated as
it was highly recommended by use case
partners in order to save changes in a
central place.

Design tools It is highly prioritized as it is
the core of PrismArch
developments

Yes -

Multiplaying
capability

It is highly prioritized
because it will allow team
members to enter the
system

Yes -

Low Priority

Progress tools
(Asana)

It is low prioritized because
it was not foreseen in GA,
nor necessary for VR
editing tools. It is a
peripheral software.

No Asana can be incorporated through a
Web browser widget inside Unreal but
its usability will be limited.

Communication
tools (Zoom,
Skype)

It is low prioritized as it was
not foreseen in the GA and
there is no library for
integrating Zoom or Skype
inside Unreal Engine. Also,
it is not directly related to
VR tools.

No There is an existing audio
communication already supported by
Unreal (Epic Online Services) or Vivox.
There is also a library for integrating
“Discord Rich Presence” however its
communication functionalities are
limited and it is an experimental
software.

Speech to text
input

It is low prioritized as it is a
general tool for any VR
application.

No It is a feature that is very experimental
for VR and not used currently in the
industry. We will examine it through
Mozilla open-source technologies.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 20

2.4 External software

PrismArch as described above is a full-fledged VR architectural design system that depends on several
external components, software, libraries and tools as shown in Table 7. Many of them have a free
version up to a certain quota.

Table 7: External Dependencies

Dependency Purpose Type Cost / License

Speckle
https://speckle.systems
/

Database Server Free for research
Apache 2.0 License

Asana
asana.com

Task management UIs and Server Free up to certain quota
(10 members)

Vivox
https://developer.vivox.
com/

Teleconferencing Service Free up to certain quota
(5000 players) / 45’ free

Epic Online Services
https://dev.epicgames.c
om/

Multiplaying Service Free

Easy eMail Client
https://www.unrealengi
ne.com/marketplace/en
-US/product/easy-email

Mailing User interface 20 euros

Advanced VR framework
https://humancodeable.
org/

VR interfaces User interface 250 euros

Mindesk
https://mindeskvr.com/

Live Link communication
with CAD software

Plugin Depends on Mindesk
partner policy
https://mindeskvr.com/s
tore/

Mozilla Speech to Text
technologies
https://github.com/moz
illa/DeepSpeech

Speech Recognition Software Free
MPL-2.0

https://speckle.systems/
https://speckle.systems/
https://asana.com/
https://developer.vivox.com/
https://developer.vivox.com/
https://dev.epicgames.com/
https://dev.epicgames.com/
https://www.unrealengine.com/marketplace/en-US/product/easy-email
https://www.unrealengine.com/marketplace/en-US/product/easy-email
https://www.unrealengine.com/marketplace/en-US/product/easy-email
https://humancodeable.org/
https://humancodeable.org/
https://mindeskvr.com/
https://mindeskvr.com/store/
https://mindeskvr.com/store/
https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 21

3. System Architectural Design

3.1 Masterplan

The proposed system architectural design concept is assembled according to the notions of

Asynchronous and Synchronous Collaboration for 3-dimensional data creation, simulation, and

annotation, as it was first introduced in D4.1. In Figure 11, we are depicting this concept. The

horizontal dimension represents the Asynchronous Collaboration that allows any changes on the AEC

project to be stored persistently into a database. The vertical dimension stands for Synchronous

Collaboration across VR users and non-VR users that allows for real-time collaborative design and

conflict resolution. More details for each modality are found in the following.

Figure 11: PrismArch Methodology - Merge Asynchronous with Synchronous collaboration.

Asynchronous Collaboration: The Asynchronous Collaboration can be used for storing the changes in

the database. In this modality, only one person at a time can push the changes to the database. This

is envisaged to happen in the following scenarios:

a) In an early stage (Date 1), when an Architect is formulating the concept of the AEC project in a

drafting software like Blender 3D.

b) later in Date 2, when multiple Architects are contributing on the initial draft design using Blender,

Rhino, and the PrismArch VR environment in Unreal. They are collaborating in real-time and the

principal designer has to commit the changes into the database using the Asynchronous

Collaboration plugin.

c) In a later stage of the project (Date, X1, X2, X3), where also other disciplines are involved. A MEP

Engineer can commit changes into the database from Revit by working collaboratively with

Structural Engineers in SAP2000, and with Architects in VR.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 22

d) Also, in other cases (Date Y1, Y2, Y3), all disciplines can work collaboratively inside VR mainly for

resolving conflicts and one of them can push the final design into the database.

In all scenarios, it can be seen that it is possible to commit changes into the database from any type

of software for each stage of the project, i.e. Blender 3D for drafting, Rhino 3D for the architectural

design, SAP2000 for structural simulations executions, Revit for committing Engineering plans, and VR

for collaborative design and conflict resolution. The VR environment is the contribution of the

PrismArch project. Asynchronous collaboration should be also integrated with Asynchronous

communication tools such as mail clients in order for the users to receive a notification when a commit

has been pushed to the system in order to be pulled. However, the main issue is the merging of

changes that happen in parallel. We consider that it can be treated only with Synchronous

collaboration in VR and with advanced semantics tools that fetch information that PrismArch semantic

service proposes. More details about merging of commits can be found in Section 3.3. For the

implementation of Asynchronous collaboration, there are currently two systems that could be possibly

used, namely Speckle by Speckle Systems and Omniverse by NVidia (see D4.1 for more details about

each software) [Omniverse]. We have preferred to use Speckle software as AKTII has experience on

writing interconnection software for its Re.AKT components, and due to Speckle's longer history in

the field of Architecture.

Synchronous collaboration: The Synchronous Collaboration modality is aiming into real-time

collaboration for 3D design, simulation, and annotation among users. This can be experts of the same

discipline, experts across disciplines, or between experts and the clients. Synchronous Collaboration

helps into coordinating the effort when all designers are present. Each expert is entering the system

through his or her software such as Blender or Rhino for Architects, Revit for Engineers, SAP2000 or

Sofistik for Structural Engineers, and for designers that are accustomed with VR, they can enter with

the VR environment (made by PrismArch) with or without using VR glasses. The Clients can also use

the VR environment for inspecting, annotating, and approving the project. Zoom, Skype, or other

Synchronous Communication tools can be used by users. Such synchronous communication tools

applications can be passed inside VR through virtual desktops that allow windows to be transferred in

VR, e.g. [OVR toolkit] and [vrDesktop].

For the implementation of Synchronous Collaboration, there are several commercial tools that can be

used as reviewed in D4.1, namely Arkio, Fuzor, Gravity Sketch, Holodeck, IrisVR-The Wild, LumenRT

and Mindesk. We have decided to use Mindesk software that allows real-time data transfer across

Rhino, Revit, and Unreal, and due to the fact that Mindesk is a partner in the project. The

developments in PrismArch will be done for bidirectional communication across software. This is not

fully operational for the time being for all 3D objects and directions using Mindesk, e.g. Unreal to

Rhino and to Revit is supported only for geometries but not for textures, also Mindesk does not

provide interfaces for Unreal but only for a custom VR renderer in Rhino 3D which is not useful for

building an enhanced VR environment with great photorealism. These all issues are currently delta

developments, i.e. ongoing work inside the PrismArch project. More details about what Mindesk can

currently achieve, and on what it works on, in order to achieve the interconnection of software can

be found in D4.1.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 23

3.2 Data-flow design

The data flow diagram for the PrismArch overall system is shown in Figure 12. The difference between

Figure 11 and Figure 12 is that time context is lost in Figure 2 in order to represent the technical details

in a greater depth. One the left-hand side there is the widely used “onscreen” 3D software that

constitutes the existing AS-IS scenario, whereas on the right hand-side is the proposed TO-BE scenario

that extends the AS-IS scenario with the PrismArch VR environment and services. It is seen that the

center of the system is the Database (PostgreSQL by Speckle Server software) where all the design

edits can be appended through commits. The communication with the database is achieved with REST

HTTP through GraphQL API (black lines).

The real-time data transfer is achieved with Mindesk real-time transfer technologies such as memory

access and Live-Link (blue lines). The data transfer across VR collaborators is achieved through VR

technologies, e.g. Epic Online Services, Unreal peer-to-peer multiuser communication, and Vivox

audio communication (red lines). Experts may use either the left-hand or right-hand software. We

hope that with this methodology we will engage users to gradually use the proposed VR environment.

The scenario for the flow of data is as follows. In the left-hand mid-side, there are the Architects 1 and

2 that are using Blender to draft the design concept. Through the Speckle plugin, they collaborate

asynchronously and transfer their design in the database. The design is in Blender geometries which

are transformed into Speckle Objects on the client side (before submission). Next, at left-hand side

bottom, Architect 2, Architect 3, and other disciplines in Rhino can fetch the concept design and

collaboratively make edits synchronously through the Mindesk plugin and commit the changes by the

Speckle Rhino plugin to the Database. The design is transformed from Rhino geometries into Speckle

Objects also on client side (before its submission). On the left-hand upper-side, the Structural

Engineers can pull the design from Database and make simulations using SAP2000 or Grasshopper

with Karamba plugin. Re.AKT plugin can be used for the communication of SAP2000 with Database, or

Speckle plugin can be used for pushing Grasshopper simulation geometries to the Speckle Database.

Mindesk plugin can be used for collaboration across Grasshopper users. MEP Engineers at left-hand

top side, can use Revit and Speckle Plugin to fetch the design from the database and insert MEP 3D

plans. They can also work synchronously through the Mindesk plugin and submit changes to Database

through Speckle plugin.

On the right-hand side, the VR technologies can be found. Architect 4 can be immersed into the VR

environment and fetch the latest design through the Speckle plugin for Unreal. PrismArch VR UI will

be used for the edits. The Mindesk plugin can be used for Synchronous Collaboration between

onscreen and VR users, i.e. for interconnecting Unreal with Revit, Rhino, and Grasshopper users.

Unreal multiplaying capabilities are used for collaborating synchronously with other VR users. HTTP

services offered by the PrismArch Knowledge Base service can be used for interrogating the Database

for semantic information across commits, e.g. “fetch all users that modified this asset”. In PrismArch,

we have implemented the Knowledge base using GraphDB and RDF triplets [GraphDB, RDF]. A Tomcat

server is used for the communication of a java service that transfers the data through REST protocol

(POSTs) [Tomcat Server].

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 24

Figure 12: Data-flow path explanation.

3.3 Merging changes done Asynchronously

The Asynchronous Collaboration modality using the Speckle Database may result in changes (commits)

done in parallel, i.e. in two different branches, and they have to be merged. In Figure 13, we present

this situation. Merging is a challenging issue where a single user has to merge commits done by many

different disciplines. For example, in the main branch, an Architect named as Architect 1 may commit

in the Database an initial plan through Blender. Another Architect, named as Architect 2 may further

evolve the design but in the same time Architect 1 can commit more changes. Another Architect,

named as Architect 3 should decide which changes to keep among these two branches. Currently,

Speckle supports the merging of changes through Grasshopper Visual Editor which allows to pick

which objects to keep from two commits by its visual programming interface. However, this kind of

merging is too difficult to accomplish when the disciplines involved are too many, and the history of

commits is more complicated, as shown in the branches shown in the right part of the image. The MEP

Engineers can not merge the commits done by Architects and Structural Engineers because they do

not have the knowledge to do this.

In PrismArch we propose the merging of commits to be done in VR due to the highly collaborative

nature of VR and due to the Knowledge Database tool, that allows to pose queries in the database and

retrieve crucial information from all commits collectively. This is depicted in Figure 14. For example,

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 25

when the users should have to merge their changes, they can arrange a meeting in the VR

environment, and perform queries on the 3D design according to the pillars “Who, What, When”. This

is envisioned in the mockups of Deliverables D1.1 and D6.1, namely how to interrogate the model with

proper interfaces. Several queries are formulated in the Knowledge Database service in order to cope

with this requirement. The designers have the ability to view metadata about commits and decide

based on the provided information.

Figure 13: The Asynchronous Collaboration may result in designs that are done in parallel and have
to be merged.

Figure 14: Synchronous collaboration for merging commits that are done in Asynchronous
collaboration threads. The VR environment will provide methodologies through the semantic service
(Knowledge Database) to retrieve data collectively from past commits, e.g. information about who

did the change, what has changed, and when has changed across commits.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 26

3.4 Implementation diagram

In this section we provide more details about the technologies that will be used for each service of the

platform. In Figure 15, a masterplan is provided. A timeplan for the developments is presented in the

Appendix. The architecture is divided into 5 major parts:

1. The Data server: It is the place where information is preserved;

2. Knowledge server: It is the place where information is processed semantically;

3. Supplementary servers: It is multiple servers that help towards implementing supplementary

coordination and communication for VR environment;

4. Real-time Data server: It is the server that allows the 3D designs to pass bidirectionally across

software.

5. The “OnScreen” AEC Software: The currently used software in AEC industry

6. The VR environment: The major VR environment proposed in PrismArch.

Figure 15: Implementation diagram.

1. Data Server: The data server is the one provided by Speckle. It can be found at

https://Speckle.xyz address. It is located in the UK and has a privacy webpage

(https://speckle.systems/privacy/). As PrismArch does not have a task for the maintenance of

a server for preserving data, it is agreed from the partners to submit imaginary AEC data to

the Speckle server. In case of real AEC data, i.e. for buildings that already exist, Speckle

Systems has offered to make an instance of the Server at CERTH premises in case CERTH can

not instal it.

https://speckle.systems/privacy/

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 27

2. Knowledge Server: The data is transferred from Data Server to Knowledge Server through the

GraphQL API of Speckle. It is stored as RDF triples in a GraphDB server. Then a Java HTTP REST

service allows the VR environment to pose POST queries in the Knowledge Database and

retrieve JSON information. The Java service is provided through a Tomcat. The server and the

database for the Knowledge Server are hosted in CERTH at http://160.40.49.211:8080

3. Supplementary Servers

3.1 Multiplaying Server: The multiplayer server is hosted at CERTH in

http://160.40.50.199:7777 . It is an executable that serves as a host in a Peer-to-peer

multiplaying schema. In the case that connection speed is not adequate among

partners, we will use Epic Online Services technologies, in order to have a more robust

solution.

3.2 Audio communication Server: In the current phase the multiplaying server is also

a server for audio communication. However, as the quality of the audio is not good,

we aim to use a Vivox server which can host a session with up to 5000 users for free.

Vivox is a major player for chatting in multiplaying games. Alternatives are Discord as

it offers an SDK that can be integrated in VR environments and Zoom which can be

called inside VR with a Virtual Desktop application.

3.3 Mail server: The users can set up the VR environment so that they can use their

company mail server to send and receive mail.

3.4 Speech to text server: We aim to train a deep learning network to recognize

numbers and simple commands. The Mozilla Common Voice provides data and

software for training the algorithm [Mozilla Voice]. A server in CERTH will be set up

for providing this service. A mitigation plan is to use the Vivox services which aims to

release such a component.

3.5. Project tasks server: It is a service for project management. For the integration,

we will use the Asana web tool [Asana], which can be called through a Web browser

widget that is offered by Unreal Engine.

4. Real-time data server: It is a server that allows the transfer of 3D CAD geometries across CAD

runtime and the PrismArch VR environment (Unreal Engine). The server (Mindesk Core) acts

as a hub for the CAD data and I/O data (including geometry, metadata, headset position,

switch status, etc.) and operates through an internal set of API that connects the Core to each

Link (CAD plugin) each time a session is launched. Mindesk can deploy the Core server locally

or remotely on a machine determined for operations within the PrismArch project.

5. The “On-Screen” AEC software

- Blender: It will be incorporated in the pipeline through a Speckle connector.

- Rhino, Revit, Grasshopper, LadyBug, Karamba: They will be incorporated in the

pipeline through Speckle connectors and Mindesk plugin.

- Excel: It will be incorporated in the pipeline through a Speckle connector.

- SAP2000: It will be incorporated in the pipeline through a connector provided by AKT

(Deliverable D4.1, Re.AKT component).

http://160.40.49.211:8080/
http://160.40.50.199:7777/

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 28

6. The VR environment: It is the main contribution of PrismArch and it consists of several
components.

a. Unreal Engine: Unreal Engine 4 is the basis for the VR system. It is provided for free

for non-profit purposes and it has a certain policy for for-profit companies such as a

share of 5% of the profits when the product exceeds 1 million USD

(https://www.unrealengine.com/en-US/faq).

b. Advanced VR framework: It is a collection of tools that allows to make appealing and

easy to use UI for VR. It provides a tree shaped visualization for the menu, a VR

smartwatch, an EOSLink component for connecting with Epic online services, and a

template for Architecture Visualizations as demonstrated in Section 2 [AVRF].

c. Collabviewer template by Unreal: It is a template offered by Unreal especially

designed for the AEC industry. It allows multi-user immersion, multiple wandering

modes such as walk or fly, and some other tools such as measurement and xray

[CollabViewer Template].

d. Speckle plugin for Unreal: Speckle plugin for allowing the bidirectional flow of data

between Speckle Database and Unreal Engine [Speckle]. The Unreal plugin of Speckle

is forked by CERTH in order to further develop the pushing of data as current version

supports only pulling of data in Unreal. Also UIs are made for manipulating Speckle in

VR as it does not have any.

e. Mindesk plugin for Unreal: It is the plugin that allows real-time data transfer between

the VR environment and the Real-time data server. It is being developed by Mindesk

in order to cover all types of geometries, textures for bidirectional communication.

f. Vivox audio communication: It is a high quality audio communication plugin in Unreal

with promised Speech-to-text capability in the upcoming months.

g. Epic Online Services Link: It is a component in Unreal that allows the VR environment

to communicate with [Epic Online Services]. The services are divided into

i. Game Services such as Multiplaying, Lobbies, Game Analytics, Voice, Player

Data Storage, Statistics, Achievements and

ii. Account Services such as single identity for Login, Friends, Presence, and

Invites.

From all these services, the Multiplaying service will be checked as a better alternative

from peer-to-peer multiplaying service and the voice service will be checked as an

alternative to peer-to-peer audio communication.

h. Artificial Intelligence C# component: It is the component provided by WP3 that will

be translated into C++ with [CLR] and incorporated into the VR environment.

https://www.unrealengine.com/en-US/faq

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 29

i. Speech-to-text client: It is a component that will allow the users to send voice data to

the server for voice recognition and perform a command in the UI. A REST API will be

called.

j. Mail client: It is a component for viewing/composing mails inside VR, connected with

the mail server of each company. We will use the “Email Plugin” for Unreal [Email UE4

plugin].

k. Knowledge DB component: It is a collection of functions that allow the semantic

service through the REST protocol. The VaRest plugin for Unreal will be used for this

purpose [VaRest].

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 30

4. Integration and verification methodology

4.1 Scope, goals, and the verification model

This chapter summarizes the integration and validation plan that is followed by the PrismArch

consortium during the development of the VR application as well as the development and integration

of web-based services. During the PrismArch project two integration cycles have been envisioned that

lead to the first and second prototypes. It is performed in a highly complex distributed environment

with multiple companies developing and deploying reusable and integrated services. The described

strategy proved to provide the required quality assurance for the development and deployment of

the integrated VR solution for all the AEC disciplines. Future developers can reuse this strategy when

extending this VR solution.

The scope of the integration methodology is to describe how the VR solution is verified (“Are we

building the product right?”). The goals of this methodology are:

● To ensure that the developed VR solutions covers the needs of the three AEC disciplines

involved that guided its design and development;

● To ensure that the VR solution work as expected after the tests described have been executed;

● To minimize the efforts in integrating the partners’ different components (by eliminating

errors in the components in an early stage);

● To align the different partners in the testing process to gain the necessary quality level in the

developed software;

● To describe the tests such that after successful testing the software satisfies the needs of all

stakeholders.

Verification of the VR solution is performed using the V-model displayed in Figure 16. The V-model is

a simple variant of the traditional waterfall model of software development with an emphasis on the

verification and validation of the software [V-model]. The V-model identifies different testing activities

or phases in which the deliverables of the associated design phases are analysed or tested. The

horizontal axis represents time and project completeness, while the vertical axis represents the level

of abstraction. Following the V-model, software development starts with describing the use cases and

defining the requirements. The requirements lead to a high-level design or architecture. The different

system components within this architecture are further elaborated in detailed technical designs.

Based on the technical designs the developers start coding, the lowest point on the V-model.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 31

Figure 16: The V-model for integration and verification.

The PrismArch project’s result is a prototype consisting of a VR application and several supplementary

services offered by partners and by third parties. During the project two prototype testings are

performed for two architectural projects, the residential Villa and the commercial Tower (D1.1). These

testings will provide feedback on both the usage of the VR solution itself and on the peripheral

assisting services. This feedback is used to improve the VR solution, and the services for the second

prototype testing phase. In preparation of each phase, the V-model as a whole is executed once, while

some parts of the V-model are executed multiple times, e.g. when retesting specific components.

4.2 Test Phases
Table 8 summarizes the two testing-phases, responsible partners and deliverables in a single

development cycle.

Table 8: List of test phases

Test phase Subject Responsible

WP/Partner

Deliverables

Component

Level

Testing

Phase

Individual

Components

Developers

(WP2, WP3,

WP4), CERTH,

UoM, Mindesk

Focus on the isolated software components,

verifies these components compile and if the

basic functions work as expected. All

individual components are tested before they

are embedded into the VR solution, e.g. UoM

verifies the AI component in C# before being

translated in C++ for Unreal.

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 32

Service

Level

Testing

Phase

Individual

Services

Service owners

(WP4), CERTH,

Mindesk

Testing the services within the PrismArch VR

solution and the interaction between the

components within each service. Verifies if

the basic functions work as expected

(functional testing) and that the service

meets the performance and security

requirements, e.g. the real-time collaboration

in VR through Mindesk server is working.

Integration

Level

Testing

Phase

Integrated

PrismArch VR

solution and

services

Service owners

(WP5), CERTH,

Mindesk

Testing the integration of the different

services with a strategy provided by each

partner.

System

Level

Testing

Phase

Integrated

PrismArch VR

solution

Use case

partners (WP6),

ZH, AKT, SWECO

Testing the VR solution against the functional

requirements to validate if the system meets

the key business requirements.

Table 9 summarizes which types of testing are advised in a specific test phase.

Table 9: Overview of test types required in the test phases.

Test phase Functional Inter-

operability

Compliance Performance Availability Security

Component

Level Testing

Phase

v - - v - v

Service Level

Testing Phase

v - v v - v

Integration

Testing Phase

v v v v - v

System

Testing Phase

v v - v v v

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 33

4.3 Issue Reporting Cell

In the following, we provide a way to report testing results. The partners that perform tests should

use these tables for reporting issues.

Software identification

Name [The name of the component according to Section 3]

Version(s) [Provide a version number for the component including any used libraries

versions]

Test period

Test phase Use one of the following

● Component Level Testing Phase

● Service Level Testing Phase

● Integration Testing Phase

● System Testing Phase

Test Types [Functional / Interoperability / Compliance / User Acceptance]

Test Status Test Completed

Planned test start

date

XX/XX/202X

Actual test start date XX/XX/202X

Test completion date XX/XX/202X

Partners [Responsible for development]

Tester(s) [Responsible for testing]

Test environment

Test environment Windows, Mac Linux or other (version included, e.g. Windows 11)

GPU drivers version

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 34

Test devices Headset (HP Reverb G2, or Oculus Quest 2)

Input methodology (VR controllers, gesture, speech)

Test pc’s Computer Specifications, GPU, CPU, RAM

References

Reference
Any reference document

No. Requirement(s)

[Which requirements are

tested?]

Expected behaviour Results round 1 Results

round 2

1 [requirement tested]

2 [another requirement

tested in parallel]

3 ...

Issue No. [The unique issue number]

Scenario ID [Low / Medium / High]

Severity [Low / Medium / High]

Type [Bug / Change request]

Summary [One line summary of the issue]

Description [Description of the issue, please give enough information to reproduce the issue]

Workaround [If there is a workaround that mitigates the issue then give it here]

Recommendations [Recommendation regarding this issue]

Screenshots [Screenshot relevant for issue]

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 35

References

[Asana] Asana, Online Project Management System, URL: https://asana.com/

[AVRF] HumanCodeable, Advanced VR Framework, URL: https://humancodeable.org/

[AVRF Vivox Core plugin] URL: Advanced VR Framework Vivox Core plugin

[https://dev.humancodeable.org/our-services-2/advanced-framework-utilities/].

[CLR] C# to C++, Common Language Runtime embedding for Unreal,

https://github.com/nxrighthere/UnrealCLR

[CollabViewer Unreal template] Collab Viewer Template, URL: https://docs.unrealengine.com/4.26/en-

US/Resources/Templates/CollabViewer/

[Discord] Discord Platform, Voice and chatting for community building, URL: http://discord.com

[Discord SDK] Discord SDK, URL: https://discord.com/developers/docs/game-sdk/sdk-starter-guide

[Discord-UE4 integration software] Discord-UE4 integration software, URL:

https://github.com/ryanjon2040/Discord-UE4#how-to

[Email UE4 plugin] Email Plugin, URL: https://www.unrealengine.com/marketplace/en-

US/product/88f228c5ad9d4288b6426754c0b3f3d1

[Epic Online Services] EPIC, online services, URL: https://dev.epicgames.com/en-

US/home?sessionInvalidated=true

[GraphDB] GraphDB - An enterprise ready Semantic Graph Database, compliant with W3C Standards

https://graphdb.ontotext.com/

[Mozilla Voice] Mozilla Speech Open Source Technologies, URL: https://research.mozilla.org/machine-

learning/

[Omniverse] NVidia, Omniverse: Real-time simulation and collaboration platform, URL:

https://developer.nvidia.com/nvidia-omniverse-platform

[OVR tools] Virtual Desktop: View desktop within VR, URL:

https://store.steampowered.com/app/1068820/OVR_Toolkit/

[RDF] Resource Description Framework (RDF), URL: https://www.w3.org/RDF/

[Speckle Server] Speckle Developer Documentation, URL: https://speckle.guide/dev/

[Speckle GraphQL API] Query data coming from a variety of sources with Speckle’s API, URL:

https://speckle.systems/developers/apis/

[Tomcat Server] Apache Tomcat Server, URL: http://tomcat.apache.org/

[Unreal Engine CrossPlatform] Sharing and Releasing Projects, URL: https://docs.unrealengine.com/4.26/en-

US/SharingAndReleasing/

[VaRest] Pushkin Studio, REST API plugin for Unreal Engine 4, URL: https://github.com/ufna/VaRest

[Vivox] Vivox Platform, In game voice and text chat, URL: https://en.wikipedia.org/wiki/Vivox

[Vivox Core Plugin] URL: https://www.unrealengine.com/marketplace/en-US/product/vivoxcore

[vrDesktop] VR desktop - Your PC in VR: URL: https://www.vrdesktop.net/

[V-model] V-Model (software development), https://en.wikipedia.org/wiki/V-Model_(software_development)

https://asana.com/
https://humancodeable.org/
https://dev.humancodeable.org/our-services-2/advanced-framework-utilities/
https://github.com/nxrighthere/UnrealCLR
https://docs.unrealengine.com/4.26/en-US/Resources/Templates/CollabViewer/
https://docs.unrealengine.com/4.26/en-US/Resources/Templates/CollabViewer/
http://discord.com/
https://discord.com/developers/docs/game-sdk/sdk-starter-guide
https://github.com/ryanjon2040/Discord-UE4#how-to
https://www.unrealengine.com/marketplace/en-US/product/88f228c5ad9d4288b6426754c0b3f3d1
https://www.unrealengine.com/marketplace/en-US/product/88f228c5ad9d4288b6426754c0b3f3d1
https://dev.epicgames.com/en-US/home?sessionInvalidated=true
https://dev.epicgames.com/en-US/home?sessionInvalidated=true
https://graphdb.ontotext.com/
https://research.mozilla.org/machine-learning/
https://research.mozilla.org/machine-learning/
https://developer.nvidia.com/nvidia-omniverse-platform
https://store.steampowered.com/app/1068820/OVR_Toolkit/
https://www.w3.org/RDF/
https://speckle.guide/dev/
https://speckle.systems/developers/apis/
http://tomcat.apache.org/
https://docs.unrealengine.com/4.26/en-US/SharingAndReleasing/
https://docs.unrealengine.com/4.26/en-US/SharingAndReleasing/
https://github.com/ufna/VaRest
https://en.wikipedia.org/wiki/Vivox
https://www.unrealengine.com/marketplace/en-US/product/vivoxcore
https://www.vrdesktop.net/
https://en.wikipedia.org/wiki/V-Model_(software_development)

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 36

Appendix

In the following we present a diagram about the timeline of the developments of each component.

Table A.1: Gantt Chart for the developments

 Year 1 Year 2

 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22

Thread Developments Task Force Thread Owner May Jun Jul Aug Sep Okt Nov Dec Jan Feb Mar Apr May Jun Jul Aug

A Setup tools CERTH

B Progress tools CERTH

C Cross-Communication tools

C.1 Synchronous (Vivox, Zoom, Discord, EOServices) CERTH

C.2 Asynchronous (Mail, Discord) CERTH

D Input methods (Speech Recognition) CERTH

E Design Tools

Orientation and Space alteration tools

E.1 Spatial Orientation tool CERTH

E.2 Toggle View Mode CERTH

E.3 Toggle Camera Perspective CERTH

E.4 Clipping Plane tool CERTH

Information tools

E.5 Commenting / Markup tool CERTH

E.6 WhiteBoard tool: CERTH

E.7 Tagging Tool CERTH

E.8
Query Tool (Knowledge Base tools (1. Develop

queries, 2. Develop REST API)
CERTH

Design Core Tools

E.9 DToolbox MINDESK

D5.1 First version architectural design and integration PrismArch 952002

PrismArch_D5.1 Page 37

E.10 Design Support and Evaluation tool CERTH

E.11 AI tools UoM

E.12 Multi-Selection tools CERTH

F Infrastructure Core development

F.1 Speckle Unreal plugin CERTH

F.2 Mindesk Server Setup Mindesk

F.3 Mindesk VR tools Mindesk

F.4 Multiplaying services CERTH

F.5 UX Mockups (VR) CERTH - ZH

F.6 Integration CERTH

