

PrismArch

Deliverable No D1.2

Elaborated report of cross-discipline principles-rules-constraints,
and interfaces definition for cross-disciplinary and

multi-simulation perspectives in VR

Project Title: PrismArch - Virtual reality aided design blending cross-disciplinary
aspects of architecture in a multi-simulation environment

Contract No: 952002 - PrismArch

Instrument: Innovation Action

Thematic Priority: H2020 ICT-55-2020

Start of project: 1 November 2020

Duration: 24 months

Due date of deliverable: 31st August 2021

Actual submission date: 18 September 2021

Version: 1.0

Main Authors: Jeg Dudley (AKT II), Helmut Kinzler (ZHA), Arun Selvaraj (SWECO)

Ref. Ares(2021)5727659 - 20/09/2021

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 2

Project funded by the European Community under the H2020
Programme for de f Cdrdrd Research and Innovation.

Deliverable title
Elaborated report of cross-discipline principles-rules-constraints,
and interfaces definition for cross-disciplinary and multi-
simulation perspectives in VR

Deliverable number D1.2

Deliverable version Alpha

Contractual date of delivery 31 August 2021

Actual date of delivery 18 September 2021

Deliverable filename PrismArch_D1.2_MainPrinciplesInterconnections_v0.1

Type of deliverable Report

Dissemination level PU

Number of pages 175

Work package WP1

Task(s) T1.2 and T1.3

Partner responsible AKT II

Author(s) AKT II: Georgios Adamopoulos, Jeg Dudley, Joel Hilmersson,
Naomi Lea.
ZHA: Helmut Kinzler, Daria Zolotareva, Risa Tadauchi,
Aleksandra Mnich-Spraiter.
SWECO: Arun Selvaraj, Oussama Yousfi.
UoM: Konstantinos Sfikas.

Editor Jeg Dudley (AKT II)

Reviewer(s) Spiros Nikolopoulos (CERTH) , Martin Brösamle (ETH)

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 3

Abstract Document outlines the technical requirements, potential AEC
ontologies and VR interfaces that must be implemented to
realise the PrismArch platform described in previous PrismArch
Deliverables.

Keywords AEC, interoperability, data exchange, architecture, structural
engineering, MEP engineering, VR, virtual reality, UI design, UX
design, PrismArch.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 4

Copyright

 © Copyright 2020 PrismArch Consortium consisting of:

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH)

2. UNIVERSITA TA MALTA (UOM)

3. ZAHA HADID LIMITED (ZAHA HADID)

4. MINDESK SOCIETA A RESPONSABILITA LIMITATA (Mindesk)

5. EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH (ETH Zürich)

6. AKT II LIMITED (AKT II Limited)

7. SWECO UK LIMITED (SWECO UK LTD)

This document may not be copied, reproduced, or modified in whole or in part for any
purpose without written permission from the PrismArch Consortium. In addition to such
written permission to copy, reproduce, or modify this document in whole or part, an
acknowledgement of the authors of the document and all applicable portions of the copyright
notice must be clearly referenced.

All rights reserved.

Deliverable history

Version Date Reason Revised by

0.1 23/07/2021 Table of Contents Dimitrios Ververidis (CERTH).

0.2 24/08/2021 First draft from AEC Partners Jeg Dudley (AKT II). Helmut
Kinzler, Risa Tadauchi and
Daria Zolotareva (ZHVR).

 0.3 08/09/2021 Additions from WP1, WP2 and WP4 Partners. Konstantinos Sfikas (UoM).
Dimitrios Ververidis (CERTH).
Arun Selvaraj (SWECO).

0.4 10/09/2021 Editing of Partners comments complete.
Sent for Internal Review.

Jeg Dudley (AKT II)

0.5 16/09/2021 Internal Review complete.
Final edits based on Reviewers comments.

Jeg Dudley and Geogios
Adamopoulos (AKTII).

1.0 18/09/2021 Formal Submission. Jeg Dudley (AKT II).

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 5

List of abbreviations and Acronyms

Abbreviation Meaning

AB Advisory Board

BIC Bank Identifier Code

CA Consortium Agreement

CFS Cost Financial Statement

DoA Description of Action

DR Deliverable Responsible

EC European Commission

GA Grant Agreement

GNU GNU is not Unix

IBAN International Bank Account Number

IoT Internet of Things

IP Intellectual Property

IPR Intellectual Property Rights

NDA Non-Disclosure Agreement

PC Project Coordinator

PHP PHP: Hypertext Preprocessor

PM Person-Month

PMB Project Management Board

PTM Project Technical Manager

R&I Research and Innovation

SB Project Supervisory Board

SBM Supervisory Board Member

ToC Table of Contents

UML Unified Modeling Language

QMR Quarterly Management Report

WP Work Package

WPL WP Leaders

AEC Architecture, Engineering and Construction

AR Augmented Reality

BIM Building Information Modelling

CAD/CAM Computer-Aided Design & Computer-Aided Manufacturing

ICT Information and communication technology

NDA Non Disclosure Agreements

SME Small and Medium-sized Enterprises

UG User Group

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 6

VR Virtual Reality

Executive Summary

Deliverable D1.2 builds upon the cross-disciplinary perspectives of the AEC industry discussed
in D1.1, by providing a more detailed description of the specific software framework
(‘ontology’) and functionalities that must be implemented to achieve the PrismArch platform.

These topics are grouped under two headings: How data should be exchanged between
different software packages and databases (Section 2), and How that data should be
visualised and interacted with inside the VR environment (Section 3).

Section 2 begins by first analysing in-depth several existing AEC ontologies, and evaluating
their relative suitability for the PrismArch platform. Various PrismArch-specific requirements
are then described in detail, and solutions are proposed for how they could be integrated into
the chosen software ontology.

Section 3 describes a series of studies undertaken by the AEC partners to determine the most
efficient interfaces that will allow architects, structural engineers and MEP engineers to
collaborate within a shared VR environment, while respecting and enhancing the small
number of discipline-specific UI requirements that also exist. These studies build upon the
research undertaken in previous Deliverables - particularly D3.1 and D6.1 - and take the form
of user interviews, followed by functionality maps, which together inform the design of the
VR interfaces that are proposed at the end of this document.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 7

Table of Contents

1.0 INTRODUCTION 11

2.0 PRINCIPLES, RULES AND CONSTRAINTS FOR PRISMARCH 13

2.1 Overview 13

2.1.1 Introduction 13

2.1.2 Approach 13

2.2 Precedent Study of Existing AEC Ontologies 15

2.2.1 Ontologies, Interoperability and the AEC industry 15

2.2.2 IFC and BCF 18

2.2.3 Speckle 31

2.2.4 Reakt 40

2.2.5 BHoM (Buildings and Habitats Object Model) 43

2.2.6 Summary and Discussion 45

2.3 Requirements for New PrismArch Ontologies 47

2.3.1 Introduction 47

2.3.2 Ontology Requirements Outlined in Previous Deliverables 48

Interoperability Across AEC Disciplines 48

Deltas & Database Integration 48

PrismArch Asset Signature 50

PrismArch Tags 50

A) Architectural Requirements 51

B) Structural Engineering Requirements 53

C) MEP Engineering Requirements 54

2.3.3 Texture Mapping 60

UV Maps / Texture Coordinate Maps 60

UV Projections 63

2.3.4 VR Optimisation 66

2.3.4.1 Asset Optimisation 66

2.3.4.2 Render-time Optimisation 69

2.3.5 Quality Diversity and Designer Modeling in PrismArch 72

2.3.5.1 Functionality 72

2.3.5.2 Data formats for DM and QD 75

2.3.6 Auxiliary Data 76

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 8

2.4 Core Foundation for Ontology 77

Overview 77

2.4.1 Option 1: Rigid Data 79

2.4.2 Option 2: Rigid Components 80

2.4.3 Option 3: Flexible Data Structures 82

2.4.4 Comparison and Selection 84

2.4.6 Specifications for Core PrismArch Schemas 86

Prism_Signature 86

Prism_Tag 86

Prism_TagConnection 87

Prism_Texture 87

Prism_UVMap 88

Prism_InstanceDefinition 88

Prism_Instance 88

Prism_AuxiliaryData 89

2.5 Specifications for Discipline-Specific PrismArch Schemas 89

2.5.2 Structural Engineering Schemas 89

Prism_StrEng_Results 90

2.5.3 MEP Engineering Schemas 94

2.6 Non-Ontological Requirements for PrismArch 96

2.6.1 Security and Authentication 96

Options for Database Integration 97

Summary of Options, and Potential Implementation Solution 101

3.0 CONCEPTUALISING THE VR EXPERIENCE 104

3.1 Introduction 104

3.2 VR Experience Requirements Outlined in Previous Deliverables 104

3.3 User Experience in the 3D Environment 105

3.3.1 Considerations for User Interaction Design 105

3.3.2 Considerations for a Dynamic Interface Design 107

3.4 Core Requirements for the VR Interface 111

3.5 Discipline-Specific Requirements for the VR Interface 119

3.5.1 Architecture 119

3.5.2 Structural Engineer 120

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 9

3.5.3 MEP Engineer 136

3.6 Proposals for the VR Interface 143

3.6.1 Cross-Disciplinary Interface 143

3.6.1.a User Interface Design for On-boarding 143

3.6.1.b User Interface Design for Personal Work Sphere 145

3.6.1.c User Interface Design for Meeting Sphere 147

3.6.1.d User Interface Design for Content Query and Demarcation 152

3.6.2 Architecture-Specific UI Elements 159

3.6.2.a User Interface Design for Scope and Task Demarcations 159

3.6.2b User Interface Design for Archiving and Retrieving Design Options 160

3.6.2.c User Interface Design for Creative Boards: Mood Board and White Board
 161

3.6.2.d User Interface Design for Analytics and Simulations 161

3.6.3 Structural Engineering-Specific UI Elements 163

3.6.4 MEP Engineering-Specific UI Elements 175

4.0 SUMMARY 179

5.0 APPENDIX 180

5.1 References 180

5.2 Extracts from Structural Engineering User Interviews 184

5.3 Images 184

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 10

●

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 11

● 1.0 INTRODUCTION

The intention of this Deliverable is to elaborate further on the critical aspects of the PrismArch
software framework and functionalities outlined across several previous Deliverables - such
as D1.1 and D6.1 - and thus provide a detailed roadmap for their technical implementation.

Note: Throughout this document, we will refer to the software framework as the ‘ontology’.
We believe this word is more accurate than framework, as ontology is a standard term, used
frequently in software development, that encompasses not only the categorisation and
grouping of data types and objects, but also the underlying philosophy of how these entities
interact within one another. [Liu, 2009].

Within an ontology are descriptions of all the different types of object that it contains. In an
AEC setting, these include objects like Walls, Beams, Columns, and so forth. These objects are
also sometimes called data types, elements, structures, entities, or schemas. Throughout this
document we will primarily use the latter term, ‘schema’, especially when either discussing
the development of these objects, or explicating the properties contained within them.

Establishing these critical aspects of PrismArch is no easy task, as the PrismArch project
touches on a number of highly technical and non-trivial issues that exist within the digital
domain of the AEC industry - namely, interoperability between software, the concept of
model fidelity and data-rich BIM, authorship and attribution of intellectual property within
multi-author environments, and lastly, the realisation and design of AEC within VR spaces.
Even that final item, which might superficially appear straight forward, is complicated - for
reasons that are described throughout in this document.

Therefore, to negotiate these topics, this Deliverable has been separated into two distinct
sections:

Section 2 describes how the underlying data of PrismArch should be structured. This data
includes the descriptions of typical schemas such as beams, walls and columns, but also of
often-overlooked data such as architectural sketches, site photographs and drawing markups.
It does so by first analysing in-depth several existing AEC ontologies, and evaluating their
relative suitability for the PrismArch platform. This section then discusses requirements that
are either PrismArch-specific, or that we feel have not been fully addressed by existing
ontologies.

This section concludes by describing in detail how these requirements could be integrated
into the chosen software ontology. Accompanying this section is a Code Library, containing
initial prototypical C# versions of many of the PrismArch schemas outlined earlier in the
document. This Code Library is available through the PrismArch GitLab account [GitLab].

Section 3 contains a series of studies undertaken by the AEC partners to determine the most
efficient interfaces that will allow architects, structural engineers and MEP engineers to
collaborate within a shared VR environment, while respecting and enhancing the small
number of discipline-specific UI requirements that also exist. These studies build upon the
research undertaken in previous Deliverables - particularly D3.1 and D6.1 - and take the form
of user interviews, followed by functionality maps, which together inform the design of the
VR interfaces that are proposed at the end of this document. As in Section 2, there are a series
of 3D models and example code that accompany these studies, and which should support
their technical implementation.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 12

●

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 13

● 2.0 PRINCIPLES, RULES AND CONSTRAINTS FOR PRISMARCH

○ 2.1 Overview

■ 2.1.1 Introduction

PrismArch is a multidisciplinary platform for collaboration in virtual reality. In order for
disciplines to communicate and exchange information about their specific domains, a
common framework for information exchange within this platform must be established. This
means a common, shared format for the exchange and schematisation of the associated
knowledge domains.

The purpose of this part of the report is to examine various pre-existing approaches and
formulations of ontologies and data structures, and eventually establish a framework for how
the PrismArch platform will handle the information it needs to process, in order to facilitate
a collaborative design process. In order to enable computers to directly exchange
information, they need to be defined in a generic and computable format, i.e an ontology.
Ontologies formalize and represent domain objects by mapping them to a common
vocabulary or set of rules.[Issa et. al 2015]

Figure 2.1.1a - Mapping between objects and concepts.

In the end, the outcome of this chapter is a single proposed ontology, which will form the
backbone of the general exchange of information within the PrismArch environment. The
structures within this ontology will feed into both the underlying algorithmic processes, as
well as being injected into the VR environment for interrogation by humans in immersive 3D
space.

■ 2.1.2 Approach

This study consists of three distinct parts, which together enabled us to determine the final
concept proposed, and which explain the reasoning behind our decisions:

1 - Precedent Study

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 14

PrismArch will not exist in a vacuum, nor will it be the first platform to see the need for an
ontological description of the domain that is Architecture, Engineering and Construction (AEC)
[Tarandi 1998, Issa et al 2015]. This means that the project does not start from scratch when
it comes to establishing a baseline for such principles, and an understanding of the current
processes is needed. Further, this also requires the platform to position itself in relation to
both present and potential future modes of data exchanges, in order to interact with them.

The precedent study examines and discusses previous approaches to ontological descriptions
and interoperability. It describes some different solutions to this class of problem, spanning
from exhaustive, all-encompassing descriptions conceived by industry consortia to more
specific tools developed within companies to deal with their own, internal, disconnections
and inefficiencies.

A selection of precedents is made to focus on a set of tools which, although they all
fundamentally try to solve a similar type of problem, vary in scope, implementation, and
philosophy. They will be examined and presented in regards to two aspects - namely their
overall structure and the complexity of implementation, as the conceptual approach to
structuring data in a digital context cannot be created, thus also not understood, in isolation
from the technology that delivers it. [Laakso et. al 2012]

2 - Formulation of Requirements

Based on the lessons learned from the precedents, a reflection is made in relation to the
needs and functionality envisioned for the PrismArch environment. Here the specifics of each
precedent are evaluated based on their general suitability and applicability, and to what
degree any pre-existing concept forms a natural base for the PrismArch platform to build
upon.

This is synthesized into a set of requirements, to which the ontological approach for the
PrismArch data organization or mapping must adhere, based on current state-of-the-art and
reflection and input from all three disciplines in relation to their own work. Further, it also
discusses and establishes what amendments, modifications or extensions potentially needs
to be made to an existing framework in order for it to fulfill the desired functionality of the
PrismArch environment.

3 - Proposed Object Structures

The chapter will then culminate in the proposed structures for the PrismArch platform. It will
not result in exhaustive descriptions, but schematic outlines on how to deal with the expected
complexity inherent in a multi-simulation, collaborative VR framework. Some examples are
presented to concretize the explanations along with some reference snippets of code
implementation.

These proposals describe three conceptually different approaches to the schematisation,
based on the findings and integration with the reviewed precedents, and merged with the
specific needs of the platform. As there is not necessarily a single way to structure and

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 15

implement this, our set of proposals will provide a framework for discussion. As such, the
advantages and disadvantages of the three proposals are listed and reflected upon.

Finally, a single concept is highlighted as the most promising one, which will form the base
for more elaborate descriptions.

○ 2.2 Precedent Study of Existing AEC Ontologies

■ 2.2.1 Ontologies, Interoperability and the AEC industry

2.2.1.1 The Wider Problem

Before detailed elaboration on all the selected frameworks, a general introduction to the
wider problem at hand is needed. This is not a problem in direct relation to the VR aspects,
but to the nature of collaboration, and more specifically the processes of information
exchange within the industry at large. Why do we need ontological descriptions of our
knowledge domain?

The concept of ontologies are closely related to the topic of interoperability. This is a well
known, and still remarkably unresolved, issue which has haunted the industry ever since the
computer became a commonplace feature in the offices of architects and engineers alike.
[Hamil 1994, Ekholm 2005] In the analogue days of building design, information was
communicated through drawings. [Laakso et. al 2012]. Handling drawings means just handling
geometric representation to which a human needs to assign some meaning, either through
symbolic conventions, or simply through visual inspection of the geometry. In the absence of
any interoperability approach, to transfer information from one package to another, the
human will need to interpret the information present in one package, and type in the
equivalent information in the receiving package. Interoperability is the concept of facilitating
computer-to-computer exchanges, where this is done in an automated fashion. Ontologies
provide a framework for digitizing this process, where each cluster of information is in the
form of an object or schema, which both the sending and receiving software know how to
handle. The contents of one software can automatically be made sense of by another.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 16

Figure 2.2.1.1a - Schemas should provide an intelligently structured format for data, that allows it to be

smoothly transferred between different contexts, thus avoiding the requirement for human intervention.

This is often done in an object oriented fashion, [Rumbaugh et al. 1991] where objects in the
knowledge domain are mapped to computer objects with properties that capture the nature
of the domain object. An example could be a beam or a wall in a building which, based on
their properties, can be rendered to the screen, but the underlying object is much more than
only the geometric description [Hamil 1994]. This is what is often referred to as Building
Information Modeling (BIM), and these objects can be used to facilitate the exchange of
information from one package to another.

However easy this may sound, the waters get muddied as the industry consists of a wide range
of disciplines, all providing their specific expertise and having their own sets of
responsibilities, coupled with an ever-expanding set of objects and associated data. It has
been noted that one of the reasons for the widespread problem of interoperability in the AEC
industry is due to its fragmented nature, with each project containing a wide range of
specialists with very varying adoption of software and IT processes. [Laakso et. al 2012]

In relation to this, each discipline also has their own objects of interest and data to support
them in this process. A partial common ground can potentially be found, as there is some
degree of overlap, but there is also a disconnection where multiple disciplines may share an
object but relate to it in different ways, assigning different relevance or meaning to them.
This concept has been previously highlighted and discussed in Deliverable 3.1 - see Section
2.1 regarding boundary objects.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 17

Figure 2.2.1.1b - Overlap between differing disciplines

But even within the local process of a single discipline, or even for a single person in their day-
to-day work, a wide set of tools will be used for documenting, sketching, analysing, etc. This
is a cause of great inefficiency, as data constantly has to be reinterpreted and reentered in
various, subtly different ways in a wide range of software and documentation. [Tibuzzi 2016]
An unambiguous, deterministic mapping from one to another is often not possible, as there
is always a variation in the domain covered by each software.

Figure 2.2.1.1c - Overlap between differing software. Not identical to the overlap between disciplines.

2.2.1.2 A Selection of Example Approaches

As the problems listed so far have been around for a long time, during this time a wide
range of solutions have emerged. A non-exhaustive list of the ones most relevant for
PrismArch are given below:

Name Developer Type / Domain Software Link

IFC buildingSMART ISO standard
BIM

Various Link

Speckle SpeckleWorks Various Various Link

Reakt AKT II BIM
Structural

Rhino, Revit
Structural

Not available

https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://speckle.systems/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 18

BHoM BuroHappold BIM
Structural

Various Link

Konstru Thornton
Tomassetti

BIM
Structural

Rhino, Revit
Structural

Link

Conveyor ProvingGround BIM Rhino, Revit Link

Beam MKS DTECH BIM Rhino,Revit Link

However, all of these examples are not necessary to study in further depth. The focus will
mainly be on two open standards for interoperability which transcends disciplines, as this is
in line with the nature of PrismArch, namely the IFC format and the Speckle data platform.
Both of these represent very different approaches to a similar problem and attempt to cover
the wider industry. Some smaller toolkits, which only exchange data between two different
software, may also not really need a generic framework, or ontology, as it simply directly
translates between them. Further, the study will also bring up two frameworks which are
developed within AEC offices to tackle their own problems, as a counterweight to the open
standards. Here, the first framework discussed will be that of the authors (AKT II), called
Reakt, followed by a similar one developed at BuroHappold engineering, which is the BHoM
toolkit. Thus, the precedent study will be composed of the following set of tools:

● IFC
● SPECKLE
● REAKT
● BHoM

■ 2.2.2 IFC and BCF

2.2.2.1 A brief introduction to IFC

The first topic in the reference study is the oldest, and probably most famous one, as it
currently positions itself as the main exchange format for the AEC industry. [Berlo et al 2012]
It is that of the Industry Foundation Classes, or the IFC format. The IFC was one of the first
and remains most widely accepted large-scale models of object based thinking in the AEC
industry, and traces its origins back to the 1990s and the early days of computer processes
[Berlo et al 2012, Hamil 1994]. With the emergence of the computer aided design (CAD)
paradigm, the first packages replicated the drawing based workflows, early CAD packages
focused on the rendering of lines etc on the screen mimicking the information of analogue
drawings. The IFC model brought the promise of an object-based approach, where things
would not simply be geometries, but complex objects like a door or a wall or a window which,
while still being rendered as some geometry on the screen, was based on a much more
sophisticated classification. Underlying objects with a meaning would allow for intelligent
systems with awareness of building constraints propagating across software and disciplines.
A building part in one software could potentially be aware of certain constraints in the
presence of another object, and throw warnings or adjust accordingly. [Hamil 1994]

https://bhom.xyz/
https://konstru.com/
https://provingground.io/tools/conveyor/
https://www.mksdtech.com/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 19

The initiative is maintained by buildingSMART, whose work focuses on “standardizing
processes, workflows and procedures for openBIM enabling digital transformation”
[buildingSMART]. The ambition of the IFC model is a complete categorization of all the
possible objects, constraints and properties necessary to capture and describe the entire
building process. Currently IFC contains more than 1000 elements and describes a large set
of objects spanning all the way from ducts, doors and beams to quantity definitions, persons
and subcontract resources.

It should be clarified that IFC is neither a software nor a file format, but a standard for
structuring information, and the intention was to create a high-level structure which sits
above any software implementation. Today, some degree of support for import and export
of IFC structured data can be found in most BIM software [ArchiCad, REVIT], and some other
software [SAP2000] and is the most widely used BIM exchange format [Berlo et al 2012].
Despite this, and the fact that it has been present for a long time, the general adaptation of
the format is still fairly low [Laakso et al 2012]. Reasons for this will be discussed later on.

2.2.2.2 Central Object Model Concept

Figure 2.2.2.2a - Inefficient connection between software (left), versus the efficient shared object model

(right).

The main principle of the IFC standard is the open, shared model. The picture, shown above,
is now a familiar one in interoperability concepts (as we shall see later on). An open data
format - into which all other software can read and write - acts as a middle man, indirectly
connecting them all. An interface format, which theoretically can be in the form of a file,
database or server. [Berlo et al 2012]

Direct translation from each software would create an immensely complex network of
exchanges, unable to scale as each new connection would require additional translators to be
written for each software. By adapting the shared model concept, this is reduced to two per
software, as they all simply have to convert back and forth to the shared format.

https://helpcenter.graphisoft.com/user-guide/77296/
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/Revit-DocumentPresent/files/GUID-6708CFD6-0AD7-461F-ADE8-6527423EC895-htm.html#:~:text=Revit%20provides%20fully%20certified%20IFC,%C2%AE%20IFC%20data%20exchange%20standards.&text=You%20can%20export%20the%20building,in%20the%20non%2Dnative%20application.
https://wiki.csiamerica.com/display/sap2000/Import+IFC+into+SAP2000

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 20

2.2.2.3 The Structure of IFC

For the IFC model to handle the complexity of mapping the entire AEC domain, a strictly
hierarchical, conceptual structure is used. At large the IFC data model is divided into four
conceptual layers; which are domain, interoperability, core and resource layers.

The layers follow strict referencing hierarchies in an inheritance ladder, making objects within
each layer referencing only allowed to reference the ones above, or within its own layer. A
driving motivation is a modular structure, making sure that the model can be easily
maintained and components can be reusable for software vendors or information modelers.
[IFC Architecture Guide 1999].

The layers and their interrelationships are highlighted in figure [IFC Documentation].

Figure 2.2.2.3a - Layers of the IFC data model

The main principles and function of the conceptual layers can be explained as follows:

Resource layer

The lowest level is the resource layer. This holds schemas to describe basic features of the
more high level objects and can be referenced by all the other layers. Objects found in the
resource layer can be considered general purpose which do not rely or inherit from anything
else. This can be, for example, utility objects such as object history, identification and general
purpose tables, or other things like measurement objects. Here you will also find the
representation resource which forms the base for most geometric representation of the
concrete entities in the higher levels.

Core layer

https://technical.buildingsmart.org/standards/ifc/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 21

The next level, the core layer, provides the basic setups for object definition for the domain
and interoperability layer, by defining the core abstract concepts to which the domains must
adhere. This, in turn, consists of two sublayers, namely the kernel and extension modules.

The kernel is the foundation for all basic concepts within any IFC release, and defines model
structure and decomposition. It should be highlighted that this is a type of template model
with definitions for objects and relationships that are not AEC specific, despite this being their
essential use-case. Anything in the kernel can reference definitions from the resource layer,
but not the Core extension layer, as that is considered a higher layer than the kernel.

The second module, the core extensions, provide the specialization of the kernel in the form
of a refinement of the largely abstract definitions into constructs pertaining to the AEC
industry, which are further referenced by higher levels.

Interoperability layer

The interoperability layer provides the interface for domain models, thus providing an
exchange mechanism for enabling interoperability across the domain objects.

Here objects and concepts shared across the disciplines are specified. These then form a basis
for exchange of data across said disciplines. Further, this layer also contains model adapters
to other, external non-IFC application models.

Domain layer

As the highest of all the layers is the domain layer, this contains models and objects for more
specific contexts within the AEC industry, capturing domain objects for HVAC, structural
design or architectural processes and software. These are concrete object entities used by
the different disciplines in isolation. For exchange between disciplines, common structures
defined in the interoperability layer must be used as an exchange mechanism.

The Structure of IFC Objects

As mentioned earlier, the IFC model explicitly defines over 1000 explicit objects. All the
objects are defined using a certain convention, where IFC uses the EXPRESS as a data
definition language which is based on an entity-relationship logic. The EXPRESS language
definition is closely linked to the STEP model [STEP Format], containing the concepts
relationships, attributes, constraints and inheritance. The final information models have the
quality of being both human and machine readable. [Ekholm 2005]

The concepts of the EXPRESS language are adapted by the IFC model in a direct way, with the
three basic types being ifcObject, ifcPropertyDefinition and ifcRelationship defined within the
kernel layer mentioned above. All of these share a common base inheritance back to the
ifcRoot definition, which is the most generic entity in the IFC model. A basic diagram of this is
shown in figure. [Ekholm 2005, IFC Documentation]

https://www.loc.gov/preservation/digital/formats/fdd/fdd000448.shtml
https://technical.buildingsmart.org/standards/ifc/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 22

The ifcRoot entity provides the basic properties name, ID, description and history, which are
used across all entities in the model. [documentation]

Figure 2.2.2.3b - IFC model basic object types

IfcObjectDefinition

The base ifcObjectDefinition entity is described in the buildingSMART documentation as:

“...is the generalization of any semantically treated thing or process, either being a type or
an occurrence. Objects are independent pieces of information that might contain or
reference other pieces of information.”

This is in-turn a supertype of IfcObject and ifcTypeObject, where

“... examples of IfcObject include physically tangible items, such as wall, beam or covering,
physically existing items, such as spaces, or conceptual items, such as grids or virtual
boundaries. It also stands for processes, such as work tasks, for controls, such as cost items,
for actors, such as persons involved in the design process, etc.

The object type (IfcTypeObject) defines the specific information about a type. It refers to the
specific level of the well recognized generic - specific - occurrence modeling paradigm.

[official documentation]
IfcRelationship

“IfcRelationship” has a double role in that it both represents relations between members of
“IfcObject”, and relations between model classes.

Definition from buildingSMART:

“The abstract generalization of all objectified relationships in IFC. Objectified relationships
are the preferred way to handle relationships among objects. This allows to keep
relationship specific properties directly at the relationship and opens the possibility to later
handle relationship specific behavior.”

IfcPropertyDefinition

https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifckernel/lexical/ifcroot.htm#:~:text=IfcRoot&text=Definition%20from%20buildingSMART%3A%20The%20IfcRoot,in%20an%20IFC%20resource%20schema.
http://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/FINAL/HTML/ifckernel/lexical/ifcobjectdefinition.htm

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 23

“IfcPropertyDefinition” represents different properties of domain objects.

Definition from buildingSMART: The IfcPropertyDefinition defines the generalization of all
characteristics (i.e. a grouping of individual properties) that may be assigned to objects.
Currently, subtypes of IfcPropertyDefinition include property set definitions, and property
sets.

Example: ifcBeam

To give a more concrete example of an IfcObject, the following diagram shows the inheritance
chain of an IfcBeam, one of the more commonly occuring architectural elements. All the
objects follow a certain naming convention using the prefix ifc followed by the name in camel
case. It’s grouped together within the IfcBuildingElement category among other familiar
objects such as walls, windows and slabs.

An example of this type of an object definition can be seen in the following image,which
shows the EXPRESS definition of an IfcBeam.

Figure 2.2.2.3c - Example of inheritance structure for some building elements

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 24

Figure 2.2.2.3d - Example EXPRESS specification for an IfcBeam

The IFC domains

Shared domains and specific domains. The shared domains are found in the interoperability
layer and provide some basic functionality shared between the more specific domains. Two
significant ones are

● ifcSharedBldgElements

● ifcSharedBldgServiceElements

ifcSharedBldgElements

Most of the shared and generic building objects are defined in the kernel layer, more
specifically in the ifcSharedBldgElements. This data model contains most generic built
elements and forms a solid base for the basic exchanges across the various domains.

 The IFC documentation describes this model as:

“The shared building elements (IfcSharedBldgElements) define the subtypes of
IfcBuildingElement, which is defined in the IfcProductExtension. Those subtypes are the
major elements, which constitutes the architectural design of the building structure.

The elements (e.g. wall, beam, column, slab, roof, stair, ramp, window, door and covering)
are the main components of the raw building (or carcass) which is central for the exchange
of project data.“

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 25

IfcSharedBldgServiceElements

“The IfcSharedBldgServiceElements schema in the interoperability layer defines basic
concepts required for interoperability primarily between Building Service domain extensions,
notably IfcHvacDomain, IfcPlumbingFireProtectionDomain, IfcElectricalDomain and
IfcBuildingControlsDomain. This schema includes concepts such as basic type and occurrence
definitions for flow and distribution systems and fundamental properties commonly used in
building service scenarios (such as fluid-flow properties, electrical properties, space thermal
properties, etc.)”

[Official Documentation]

Within the more specialised, and isolated domain models, one can find the following set of
data models: [IFC Documentation].

● IfcArchitectureDomain
● IfcBuildingControlsDomain
● IfcConstructionMgmDomain
● IfcElectricalDomain
● IfcFacilitiesDomain
● IfcHvacDomain
● IfcPlumbingFireProtectionDomain
● IfcStructuralElementsDomain
● IfcStructuralAnalysisDomain

A set of these domains can be considered more relevant for the Prism platform given the
current roster of disciplines involved. These will be elaborated in slightly more detail here:

IfcArchitectureDomain

Most architectural elements are already defined in the IFCSHAREDBLDGELEMENTS model
mentioned above. The specific architectural domain contains only highly specific entities that
have not been genericized enough to be present among the shared elements. This is in the
end a fairly specific subset containing objects such as specific permeable covering properties
for window or door openings, or for example space programs for design briefs.

IfcStructuralElementsDomain

The StructuralElements domain contains the necessary elements for parts that are of a
structural nature. This contains specific objects such as footings, piles or reinforcement.
Some of these are top level objects in their own right, whereas others, like reinforcement,
are contained within other objects. [Official Documentation]

The schema IfcStructuralElementsDomain provides the ability to represent different kinds of
building elements and building element parts which in general are of structural nature.

IfcStructuralAnalysisDomain

https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifcsharedbldgserviceelements/ifcsharedbldgserviceelements.htm
https://technical.buildingsmart.org/standards/ifc/
http://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifcarchitecturedomain/ifcarchitecturedomain.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifcstructuralelementsdomain/ifcstructuralelementsdomain.htm

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 26

The StructuralElements domain does not contain analysis objects, but physical objects, and
for the description of structural analysis objects the StructuralAnalysis domain is defined.
This is used to tie structural element definitions to the shared building elements, with the
overall aim to expose analysis results to the other domains. [Official Documentation]

Effectively, the model handles planar and spatial structural analysis models for the interface
with structural analysis software, containing entities such as ifcStructuralAnalysisModel,
ifcStructuralConnection, ifcStructuralMember and ifcStructuralLoadgroup.

IfcHvacDomain

“The IfcHvacDomain schema in the domain layer defines basic object concepts required for
interoperability within the heating, ventilating and air conditioning (HVAC) domain. It
extends concepts defined in the IfcSharedBldgServiceElements schema.“

[Official Documentation]

In general, the scope of the Hvac domain model can be said to include types like segments,
fittings and connections like duct and piping used for various systems like water and air flow,
along with relevant equipment such as boilers, fans and additional control devices like air
vents. The scope is said to exclude industrial speciality equipment, provisions for dealing with
chemical hazards, and control systems.

2.2.2.4 Schema vs. Implementation

As previously mentioned, IFC is not a file format but a standard specification, however, for
the most part, IFC is designed for a file-based transaction system. [Laakso et al 2012] At the
moment, the original STEP format is the most used across the industry, but there exists a wide
range of ways to represent data of the IFC format.

An extensive list can be found at:

● https://technical.buildingsmart.org/standards/ifc/ifc-formats/

For the purpose of this study, three of those formats will be put under some more scrutiny.
Along with the basic STEP format, those are:

● XML format
● Json format

The reason for those two specific formats being of particular interest lies in the fact that those
are generic formats for data exchange which, for the purpose of the PrismArch environment,
would open up possibilities of parsing ifc data using off-the-shelf or standardized ways. This
would be difficult to do using a bespoke format as the STEP file. Below follows a brief
comparison and examination of all formats, both the ifc and general xml and json.

STEP Format

https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifcstructuralanalysisdomain/ifcstructuralanalysisdomain.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifchvacdomain/ifchvacdomain.htm
https://technical.buildingsmart.org/standards/ifc/ifc-formats/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 27

The STEP format, being the earliest form of IFC data representation, is the most widely
supported and encountered one in the industry today. A snippet of the way the file is
structured can be seen below:

Figure 2.2.2.4a - Example of STEP format text file.

It is based on the ISO standard for clear text representation EXPRESS data models (ISO
103003-21) and each line documents a single object record with a global label. Although the
format is technically human readable, cross-referencing labels of 100,000 objects is practically
an impossible and nonsensical task for a human, hence the file is hard to make any sense of
without a IFC STEP file parser of some sort. It has no hierarchies or indentation to help
structure the data in a way that is easier for a human to make sense of, even if just for a local
element.

A benefit of the STEP format is its fairly small size, making it efficient to store and send when
handling large models, which is a common feature in AEC processes as buildings tend to be
fairly large. However, no general off the shelf tools can be used to parse a IFC STEP file and
IFC likewise provides nothing to help, so one has to rely on the work of third-party APIs, for
example XBIM [XBIM homepage]. Likewise, a file can not be queried or partially read, but the
entire thing has to be imported in order to get information out of it.

XML Format

An alternative way of storing data in the IFC schema is through the IFC-XML format. This
format can be generated directly from the sending application per a structure called STEP-
XML. An example of this format is shown below.

https://docs.xbim.net/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 28

Figure 2.2.2.4b - Example of XML format text file.

This was developed for the exchange of partial building models and for direct integration with
pre-existing and straightforward XML parsing tools. A drawback of the format is that the
resulting files are 300%-400% larger for the same data, making it significantly less efficient
compared to the STEP format. Because of the size implications, this format is less common in
practice [ref].

IFC JSON

JSON is the de facto way of exchanging data within web-based mediums and is becoming
increasingly popular within the AEC industry, as we will see later on in the chapter about
Speckle.

Figure 2.2.2.4c - Example of JSON format text file.

Software Implementation

Beyond this, IFC also does not provide any connections to existing software, meaning that the
responsibility for setting up exchanges between proprietary software packages and data
represented in the IFC format is solely down to the software package. IFC does provide an
implementation agreement [IFC Implementation Agreement] which establishes the general
way in which data should be represented and interpreted, but there is no mode of enforcing
or controlling this. This can cause ambiguity and uncertainty in exactly how a certain object is
represented in the IFC export, as that depends on the reasoning of any software themselves.
Reports say that this may cause difficulties in the so-called “round tripping” of IFC models as

https://docs.fileformat.com/cad/ifc/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 29

different vendors might use the vast library of IFC structures in differing ways, essentially
almost nullifying the whole premise of the effort. [Berlo et al 2012, Amoor 1997]

1.2.2.5 IFC today

Today, when it comes to BIM interoperability, IFC is the most widely recognised format.
However, there are reports [Gielingh 2008, Laakso et al 2012] that the format still experiences
a fairly poor industry uptake, despite having been around for a while. Gielingh believes there
are three driving reasons responsible for this: business motivation, legal aspects and industry
readiness.

However, a large portion of this can most likely be attributed to inconsistent and unreliability
in exports. He further goes on to question the entire standardized model, stating that it will
always be limited by these inconsistencies, stemming both from poor implementation but
also the fundamental domain variations between software and disciplines.

A format initially conceived in the 1990s may carry some features and inherent logic that are
not up-to-date with more current advances in technology. BuildingSMART themselves state
that:

“The STEP standard is very efficient and has a rich set of advanced modelling techniques to
create efficient file-based data exchange. The definition of IFC has quite some STEP specific
modelling techniques, and over time gathered some inconsistencies. To work towards a
future-proof IFC these issues need to be resolved...”

From BuildingSMART GitHub

They further go on to list some issues to be tackled in order to future-proof the IFC standard.
Among those things, they state that the geometry kernel is too big, and that it contains a large
set of entities which, although they provide efficient storage, only have a few use cases. In
relation to this they further state that many advanced modeling structures provide conflicting
and ambiguous ways to build implementations. In total all these issues contribute to a lack of
interoperability that has resulted in inconsistent implementations, as implementing the
complete IFC models consistently across multiple isolated vendors is very difficult.

Further, they state that many advanced data modelling techniques, like linked lists, have no
comparable equivalent in languages like UML (that aid in the conversion and translation of
schemas between languages). Thus, trying to reconstruct IFC data types in languages like JSON
and XML demands bespoke solutions, incompatible with their general libraries.

Finally concluding that:

“No one standard can/ should rule all use-cases. IFC should have a clear focus and scope.
Although use-cases can be supported it does not mean they should be when there are
alternative standards available. Modularity helps in pairings with other standards and

https://github.com/buildingSMART/NextGen-IFC/wiki/Towards-a-technology-independent-IFC

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 30

reduces implementation effort when only relevant modules need to be implemented. This
means that extensive relationships between distinct modules need to be minimized.”

From BuildingSMART GitHub

2.2.2.6 The BCF Format

The BIM Collaboration Format (BCF) is a file format developed to enhance communication in
construction projects. Development of the BCF started in 2009 by Solibri and Tekla, two
members of the buildingSMART International Implementation Support Group (ISG). The
desire to enhance and improve open communication technology between IFC based
workflows led the ISG members to develop this format.
 BCF mainly focuses on communication regarding model based issues. These issues are
highlighted within a project file. BCF leverages the IFC files produced by appointed parties and
produces a report which contains the issues to be discussed.
 The data is formatted and transferred in XML. The data contains a PNG image and IFC
coordinates for easier location of the issue. A description can also be added to give better
insight of what the issue is, probable causes and proposed solutions.
 BCF is an open file format similar to IFC and data dictionary (bsDD) which means that
anyone may use it. The files can be exchanged via a web server or simple file exchange.
 Since BCF is intended for use within a construction project we need to better
understand the use of this file format in each phase of the construction. The four phases of
construction and the use of BCF can be described as:

Design Phase

◦ Documenting quality assurance / quality checking (QA/QC) of BIM items.

◦ Identifying design coordination (aka clash detection) issues between BIM domains.

◦ Annotating design options, object substitutions, and material selections.

Procurement Phase

◦ Bidding coordination items and clarifications.

◦ Cost and supplier information for objects, assemblies, and/or systems.

Construction Phase

◦ Quality assurance / quality checking (QA/QC) records of installations vs. BIMs.

◦ Tracking availability of items/materials and coordinating substitutions.

◦ Collection of last-minute information for handover to owner/operator as part of
the COBie deliverables.

Operations Phase

◦ Notations to handover models as changes are made to the facility and its many
elements during occupation.

◦ Owners notes about needed upgrades.

As we mentioned previously, the BCF file format includes the PNG image, the IFC
coordinates and the additional notes. The software needed to open the BCF file is called a

https://github.com/buildingSMART/NextGen-IFC/wiki/Towards-a-technology-independent-IFC

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 31

BCF Manager in general. BCF Managers may be open source or under license schemes. The
most common open source BCF Manager is the BCFier for Windows. Proprietary software
developers include BCF Managers either as stand-alone applications or as add-ins to a wider
set of tools. The evolution of technologies, cloud solutions and the increase of the speed of
internet connections led software developers to add cloud solutions to their development
lists. Nowadays, BCF Managers exist in the cloud offering a wide range of additional services
and enhanced collaboration between the different parties and stakeholders within a
construction project. The issues can be handled locally and then uploaded to the cloud or
directly developed and updated within the cloud solution.

 The benefits of using the BCF file include :

● Better issue management
● Tracking history of issues
● One centralized environment for decentralized information
● Not losing comments and design solutions in the ocean of emails
● Saves time
● Increased level of collaboration
● Easy to understand and handle
● Local or cloud options
● Freeware or Payware solutions

The need for enhanced collaboration leads to solutions such as BCF. The data rich reports
improve decision making, the way the format has been developed keeps track of all changes
so at any given point we can revert back and inspect who make which decision and for what
reason, and finally the open standard will enhance the multiple software intended to be
used within PrismArch to have a centralised way of communicating the issues.

■ 2.2.3 Speckle

2.2.3.1 Background

Speckle is a more recent development within the AEC interoperability field. In its scope and
approximate solution, it is superficially similar to IFC, and what that system was attempting
to achieve twenty years earlier. However, Speckle takes a slightly different approach.
As they state:

“Bye bye legacy software and proprietary formats, you’ve been around for too long. There’s a
new way of working: it’s based on open, accessible and secure data.
We believe that open source, and in particular open source data infrastructure, is the only
solution to this industry’s stagnant, inefficient and fragmented modus operandi.”

[Speckle]

So while Speckle is a set of data models, and a series of implementations across a range of
software - both aspects applicable to IFC - it is also a web-based data storage platform and,
beyond that, it is a philosophy for interoperability [Stefanescu 2020]. It emerged from a PhD
project conducted at the Bartlett School of Architecture by Dimitrie Stefanescu, titled
“Alternate Means of Digital Design Communication”, and undertaken between 2015 and

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 32

2019. The thesis discusses digital data as a medium in the design process and covers topics
like data classification, representation, and transactions from a collaborative and
multidisciplinary perspective.
The outcome of this research was a start-up company called Speckle, and also a suite of tools
and software connectors developed by them, given the same name. The ‘mission statement’
of the Speckle company is to build the first version control system for the AEC disciplines. Just
as version control (in the guise of GitHub and similar projects) revolutionised certain aspects
of software development, it is hoped that Speckle will similarly advance coordination and
collaboration in construction.

Figure 2.2.3.1a - Snippet of the Speckle web interface at speckle.xyz

As stated earlier, the Speckle tools contain a web-interface. However, the following review
will not focus on this web platform or the nature of web-based collaboration, but will instead
discuss the ontological concepts behind Speckle, and their underlying logic and philosophy.

2.2.3.2 The Speckle Interoperability Approach

Speckle takes some fundamentally different positions and assumptions about the nature of
interoperability, data exchange and ontologies, compared to the IFC format. As previously
discussed, IFC aims to explicitly define a structure for every single object one could possibly
need as part of the AEC design process. Speckle, on the other hand, posits that such a thing
cannot be done, and any such attempt will always be incomplete given the unpredictable and
varied range of data associated with the wide range of objects within the industry [Stefanescu
2020].

Therefore, Speckle instead favours a more implicit and bottom-up driven approach. Based on
a minimal set of objects, it allows users to customize them and assemble completely custom
data structures tailored to their own needs.

In some scenarios the IFC model might fail, because it was developed by a centralized
organization who did not include certain properties or sets of data that are now required, and
the IFC model cannot flexibly respond. In comparison, Speckle allows users to append those
properties to any object in an ad-hoc fashion. The rigid ontological formulation of IFC is here

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 33

replaced by one that can change and morph given the current needs and, more importantly,
the context.

Composable Objects

A composable object model, as proposed by Stefanescu, presents objects that are not explicit,
but instead can be assembled or composed from a set of additional objects or data sets.

A set of low level objects can be composed to assemble higher level concepts, and likewise
most high level concepts can eventually be reduced to a fundamental geometric or digital
entity - such as a point, line, integer or boolean. [Stefanescu 2020]

Figure 2.2.3.2a - Example of a composable object model.

Further, this approach extends to a fully flexible definition where objects can be made up of
various sets of components, thus providing a mechanism for each discipline to project their
specific meaning onto an object. What these compositions are can be formulated and revised
as a project goes on, as new information and considerations naturally emerge throughout the
design process. The objects are then flexible enough to adapt new meanings or hold
additional information that suddenly becomes essential. This approach is therefore entirely
consistent with the type of ‘wicked problem’ that AEC interoperability represents [Miller,
2016 & Rittel and Webber, 1973].

Ontological Revision

Another feature of these composable and extensible objects is that they can adapt and adjust
based on the context. These objects are not required to hold all the data they might need at
any point, or even placeholders for this data. Instead, objects naturally change what
properties and features they contain as they move through the domain variations of different
software applications, as discussed in chapter 1.2.1.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 34

As D.Stefanescu writes :

“The actors involved in the design process may not share the same internal representations
of a specific building element. For example, an architect may represent a beam in one way,
whereas the structural engineer in a different way.”

[Stefanescu 2020]

This brings us to the topic of ontological revision, as formalised by D.Stefanescu [Stefanescu
2020].

Figure 2.2.3.2b - Ontological revision, as proposed by Speckle.

Through this process an object can naturally emerge in a specific, specialist context, and
within that context perform a particular function. As it is shared and moves into a different,
more generic context, some of that information may no longer be relevant, thus naturally
some of its data will and should be lost. Conversely, an object entering a context for which it
was not explicitly designed can be assigned additional properties, making it suitable for use
in new and unexpected contexts.

Speckle Data Models

As stated above, this flexible object structure clearly has many benefits. However, automating
the process of translating and exchanging these flexible entities can be more complex than in
the case of rigid data types, as there is less guidance for how to use the unexpected data that
might be contained within any given object. Hence, some type of structure is necessary to
project onto the data for software to be able to interpret it. This predicted structure should
not be in contrast to the extensible and composable objects paradigm - instead, these
schemas are used to enforce a certain set of sub components or properties to impose a
certain meaning to it. This also does not negate the possibility to further extend a fixed
schema with custom properties, although, these properties may have to rely on some human
interpretation at the receiving end of an exchange.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 35

Speckle acknowledges this with the concept of object models, or Speckle Kits. In contrast to
IFC, however, Speckle does not set out to define an exhaustive object model, and instead
adapts a more modular approach. The core Speckle object model, or ObjectsKit, only defines
a handful of fundamental and very general objects, such as core geometric structures and a
set of built elements. Speckle provides a minimum shared common ground, within which
companies or individuals can amend, extend or replace. Users therefore have the option to
either adapt an object if it is entirely suitable, or append additional user data to it if it requires
only minor revision, or, as a last resort, create an entirely new data model of their own design
- but which can still seamlessly transfer through the Speckle medium, thus extending the
ecosystem.

A Speckle object model is composed of two parts, with the first part being the schemas
themselves, and the second being how these schemas are interpreted in the particular
sending and receiving contexts of different software applications. Together, these two
components form the basis for Speckle Transactions.

This approach allows Speckle to move away from AEC entities that are hard-coded and
centrally-defined schemas, into flexible schemas that can be adapted and expanded by the
users themselves. And this in turn reinforces the ontological revision concept explained
earlier: when an object moves from a more specialised software package into another, more
generic one, there need not be compatibility issues - the object can instead simply shed the
custom data pertaining to the specialist context and carry on as, for example, a simple
geometric object. This concept is very powerful as it allows different disciplines to directly
communicate across disparate software platforms, while still having the ability to retain and
communicate their own unique properties within their own internal environments and
exchanges.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 36

Figure 2.2.3.2c - Flexibility of schemas across disciplines.

Using this malleable ontology, a network of more- and less-specific schemas can be developed
by different disciplines during the lifetime of an AEC project. This can occur with the critical
assurance that overlapping data will be retained between parties, but without the burden of
them all needing to conform to overly-complex overarching data types. A representation of
this type of networked object models is shown in the diagram above.

Whereas IFC forces a global agreement on all aspects of all object structures, here instead
companies and disciplines share only a minimal common denominator, which each is free to
expand upon and grow according to their own needs.

2.2.3.3 Implementation

In contrast to IFC, Speckle is a complete platform with objects and conversion defined within
the .NET framework and API for the C# programming language.

As Speckle is an open source initiative, all of the code is available at their GitHub account
[Speckle GitHub].

JSON

Speckle, as a web-based platform, makes use of the JSON format for exchange of data. JSON
nicely complements the composable and nestable data approach that Speckle proposes.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 37

JSON is an unstructured format based on nesting keys and values. Standard tools can then be
used to expand and query any Speckle object, no matter what structure it has.

An example of a serialized Speckle object with nested values can be seen here:

Figure 2.2.3.3a - Example Speckle object serialised to JSON format.

Objects

All Speckle objects share a common base object and are located in the Speckle.NET repository.

The latest release of Speckle (version 2) uses an underlying dynamic object [.NET
documentation] as the mechanism to handle the unstructured nature of the data. This allows
users to dynamically add properties through the dot notation, and these properties are then
created at runtime. This ensures all Speckle objects can, at the most fundamental level, hold
an arbitrary set of data. For reliable serialization, the underlying storage of this arbitrary data
occurs within a Dictionary<string, object> structure, which nicely maps to the JSON format.

The base Speckle object therefore has the following basic properties.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/using-type-dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/using-type-dynamic

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 38

Figure 2.2.3.3b - Speckle Base Object

This base object can be used out-of-the-box as shown below, by dynamically assigning
properties and values.

Figure 2.2.3.3c - Adding properties to the Speckle Base Object.

The Speckle base object handles tasks, like hashing, for interfacing with the Speckle database.
Speckle objects are fundamentally immutable, thus changing any single property results in an
entirely new object being created. This is controlled via the hash value, which is generated
from all the object’s properties.

Even though Speckle objects can be used as they are, most object models are extended in one
way or another, to generate more specific schemas. This is done by inheriting from the
Speckle base object and adding additional properties. This is how the default Speckle objects
model is created, and also how any user would create their own, custom model. An example
is given below, that shows the extension of the base object into a Box object, by assigning
properties such as a Base Plane and Size domains. Users do not have to start a new object
model from the original base object, but can instead use any other object which extends the
base object as their foundation.

A clear example of this is the default implementation of a Speckle Beam, and its child class
Speckle Revit Beam, shown below:

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 39

Figure 2.2.3.3d - New Speckle Box Object, that inherits from the Base Object.

Figure 2.2.3.3e - Speckle Beam and Speckle Revit Beams, an example of multi-level inheritance.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 40

■ 2.2.4 Reakt

2.2.4.1 Background

In addition to the development of the IFC format, a lack of uptake in the industry can be seen
in the emergence of company-wide, bespoke interoperability approaches. These do not
function as extensions or complements to the IFC format, but as completely separate
ecosystems, which cater to the specific needs of the company, given project type and general
company philosophy. Referring back to the Speckle chapter, D.Stefanescu writes that:

[company specific interoperability toolkits] ...result from the problematic nature of IFC,
whose scope, while vast, is limited, and extensions of it are not easily shared…

...These ad-hoc informed standards have scopes that vary from a single-project base to a
company-wide norm. To a certain extent, the emergence of such standards results from the
need to further articulate domain- and organisation-specific knowledge that accumulates
over time: most observed examples underpin computational techniques, workflows and
methodologies that quintessentially represent a given organisation market advantage, or a
given domain’s internal language constructs that allow for its effective functioning.
[Stefanescu 2020]

This chapter contains a detailed description of one of those, namely the Reakt toolkit,
developed in-house at engineering firm AKT II, the main contributors of this report. But as can
be seen in the table (1.2.1.2), there exists a wide range of similar initiatives across various
larger companies in the industry. The Reakt toolkit is developed within the very specific needs
of the company, as a design-led and collaborative practice. [Tibuzzi 2016]. As primarily a
structural engineering firm, the scope and application of Reakt, as opposed to the IFC or
Speckle, is smaller and more focused on a single discipline.

The Reakt schemas contains many non-engineering categories - such as Geometric entities,
embodied carbon analysis and computational fluid dynamic (CFD) entities - however this
study of the Reakt toolkit will mainly focus on just one of those aspects, namely the exchange
of structural analysis models.

The scope of the Reakt structural toolkit emerges from the day-to-day work of the practise.
Some examples of tasks carried out are:

● Advanced geometry modeling.
● Exchanging geometry data, analysis data and BIM data between software.
● Structural results interrogation and visualisation.
● Variation studies and optimisation of structural systems.
● Quickly responding to, by understanding the structural implications of, changes to

the architectural design.

2.2.4.2 Structural analysis domain

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 41

The models that make up this domain do not hold the same set of information as their BIM
or architectural counterparts. Therefore, the software designed for structural analysis does
not cover the same ontological domain as the BIM software does. To highlight this, here will
follow a breakdown of the ontological subdomain that constitutes the objects and data that
are specific to the structural engineering domain. An overarching illustration of the domain
interaction between BIM and analysis models is highlighted in the following diagram:

Figure 2.2.4.2a - overlap between structural analysis and BIM domains.

Before going into the workings and data structures of the Reakt toolkit, a discussion of the
corresponding domain is necessary. As mentioned, this primarily deals with the exchange
and categorisation of a structural model, which should be regarded as separate to (or at least
a sub-domain of) the broader architectural domain. The structural analysis domain, as it deals
with abstractions, is significantly smaller in scope than the architectural domain.

What needs to be stated is that the objects used in structural analysis largely follow a
behavioural categorisation. Thus in the analysis world, the distinction or meaning of elements
is slightly different than in the architectural world. For example: the word beam has different
meanings across these disciplines. In engineering, a screw or column will be modelled as a
“Beam” in the sense that it is a linear object that transfers normal, shear and bending forces.
To a structural engineer, the actual physical nature or appearance is of lesser relevance. The
analysis model simply deals with object behaviours as a means of understanding their physical
behaviour.

Some of the objects have a physical relevance and a role to play in the BIM Model, some have
not. Either because they are non-geometrical assignments such as support conditions or
loads. Objects in the analysis context) might not, through their definition alone, given the
macro view of what they represent in real world terms (here this refers to the BIM model, as
it tries to document and represent the actual physical entities.) In a behavioural
categorization, likewise, some elements in the architectural model might be geometrically
excluded from the structural model, as their action is undesired and will be separate from the

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 42

system as a whole. This might make them only represented as a line load together with other
loads such as snow and wind loads. An example of some examples of object mapping between
BIM and Finite Element Analysis (FEA) model contexts is shown below.

Figure 2.2.4.2b - Example of unintuitive objectmapping between analysis and bim contexts

2.2.4.3 Reakt Structural Object Model

The object model used for the structural part of the Reakt toolkit aims to cover the sets of
objects and properties necessary for the exchange of a (primarily) structural model.
Compared to the extensive IFC, and the more flexible model promoted by Speckle, Reakt
represents a third and slightly different condition. The model is rigid and explicit, much like
the IFC data model, however, the scope it is intended to cover is significantly reduced.

The general scope of elements used in a structural model creation can almost be reduced to
the following subsets:

● Structural Elements
○ 0D
○ 1D
○ 2D
○ 3D

● Assignments
○ Boundary Conditions
○ Loads
○ Elements
○ Assignments

■ Materials
■ Cross Sections
■ Releases

Although these can be described in varying degrees of complexity, and there are some
additional more advanced features, this scope covers the majority of analysis situations.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 43

Finally, after a user has set up and run a model, this produces a set of analysis results. The
majority of these results can be described as simple vector or scalar values for a specific
element or location in the system. These simple data structures are then embedded within
the particular elements to store data such as nodal displacements, nodal forces, element
forces or element stresses.

In general Reakt defines only the following set of primary structural objects:

● Structural Node
● Structural Line
● Structural Mesh
● Structural Area
● Structural Link

2.2.4.4 Implementation considerations

The Reakt approach follows the same patterns as that of IFC and Speckle. The core concept
of the interoperability approach uses a set of core, platform-agnostic objects to store data,
and a library of conversions which reads and writes these containers from various structural
analysis packages.

The general object model follows an inheritance chain based on a shared base object, which
has the basic properties such as name and ID. Further this is extended either to main
objects, which are the geometric entities such as beams and nodes, and general objects
which can be things like loads, support definitions and cross sections.

The abstract main object has four components:

● Geometry
● Structure
● FEA
● BIM

which are responsible for different data sets needed. The Geometry component stores the
underlying geometry logic used by most packages, the Structure component stores the
necessary information for analysis packages, FEA stores analysis results and meshing and
BIM is used to interface with BIM applications, such as Revit. To extend the objects with
further functionality, more components could be added to associate more types of data to
the object.

■ 2.2.5 BHoM (Buildings and Habitats Object Model)

2.2.5.1 Structure of the BHoM

The Buildings and Habitats Object Model is an initiative targeting interoperability within
engineering and related disciplines started at the firm Buro Happold. It is described as:

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 44

“... a collaborative computational development project for the built environment. It is a
collective effort to share code and standardise the data that we use to design, everyday –
across all activities and all disciplines.”

[Official Documentation]

The aim of the BHoM is not to standardise processes and software, but the data to make the
work more efficient and enable collaboration. Similar to Reakt, Speckle and IFC, BHoM is
concerned with standardisation and establishing software-agnostic exchange formats.
Eventually, the essence is the enabling of seamless transitions from code prototyping to final
processes across all software used within the company.

2.2.5.2 Implementation Considerations

BHoM makes a fundamental distinction between the two dual components of computation,
namely data and manipulation. Overall, the toolkit is structured around 4 code categories,
which are:

● oM
The Object Model defines the base ontologies, which are grouped into a wide set of
objects spanning from structural to acoustics, humans and lighting. Although the
core object model is more explicit than Speckle, each object still has the ability to
hold custom user data based on a key value pair type structure, which handles data
local to specific contexts.

● Engine
The objects themselves define no particular operations, but the manipulations or
methods are instead found in the engine. This code domain has all custom
algorithms etc which the engineers define.

● Adapters
Similar to the conversions needed for a speckle kit, the logic for interfacing with
proprietary software packages of the bhom is called adapters. These provide the
conversion between objects or formats native to an application and the generic
BHoM format.

● UI
The final category, the UI, is responsible for actually exposing the previous logic so
that the users can interact with it. This could, for example, be in the form of a plugin,
like the BHoM Grasshopper or Excel interfaces.

BHoM, like Reakt, does not have a fully-developed central database where the information
is stored, as Speckle does. The object model simply handles objects at runtime. BHoM does,
however, provide a link which allows reading and writing of data to a Mongo database
(MongoDB). Mongo is a database with a structure based key-value pairs, similar to the json
format explained in section 2.2.2 and 2.2.3. For more information, see the github repo.

https://github.com/BHoM/documentation/wiki
https://github.com/BHoM/Mongo_Toolkit

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 45

■ 2.2.6 Summary and Discussion

Before establishing a set of criteria for the PrismArch ontology, we must identify and
summarise the main characteristics of each of the precedent ontologies already discussed:

IFC

● Explicit / Static formulations for everything, to make direct Computer-to-Computer
transactions.

● Myriad near-identical schemas create confusion and ambiguity, despite their
explicitness.

● Inconsistency across implementations.
● Problem with a complete model: if objects don’t suit users needs, revisions or

updates to schemas is a slow and closed / centralised process.
● All responsibility of interpreting on the medium itself.
● Centralised standard - no way for users to customize.
● File based, not queryable.
● Not optimised for database interactions.
● Not optimised for fast web-based data exchange.

SPECKLE

● System designed to handle generic data structures which may or may not have any
particular meaning for the particular software deserializing them. More responsibility
for interpreting and verifying said information is assigned to the end-user.

● Late binding of data as objects are composable, both with predefined or custom data
structures.

● A network of Object Models, shared base, but allowed to branch and expand.
● Ontological Revision.
● Combination of exchanges, object model and implementation /connectors.
● Web-based interface, easily queryable schemas.
● Closely tied to the .NET framework - the standard API language for AEC software.

REAKT

● Specialist / discipline-specific.
● Exhaustive but clearly limited in scope, due to single domain.
● Good overlap between target software platforms.
● Not optimised for database interactions.
● Not optimised for fast web-based data exchange.

BHoM

● Similar to Speckle in providing extendable objects.
● Decoupling of objects as containers and methods.
● Not optimised for database interactions.
● Not optimised for fast web-based data exchange.

What are some general trends that can be seen across the approaches?

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 46

● Both Speckle and IFC have distinctions between common or shared domains and

specialist domains.

● Central object model used as a mechanism for connecting various software.

What are some differences that can be seen? Which are favourable, and why?

● File-based vs. Object-based
○ File-based requires exchange of complete models everytime.
○ Object-based approaches offer more flexible, atomised comparison between

models and potential for database integration.
○ Object-based approach should be implemented in Prism.

● Composed vs Complete

○ Reakt Structural and IFC are complete models, necessitating a reduced scope
to be manageable.

○ References made to other vast and all-encompassing explicit or structuralist
ontological frameworks show that these types of formulations are bound to
be incomplete. Further, it can be seen that the custom user data approach
(i.e. the composed model) is widely used, as it is reported that, based on
analysis of objects sent through the Speckle platform, 18% of the total
objects made and sent are using custom sets of user data. [Stefanescu 2020]

○ A composed model should therefore be implemented in Prism, to ensure
complete flexibility in element definition.

What are some core concepts to consider for the definition of PrismArch ontologies?

● Predictability vs Flexibility

How generic can we make something for the automatic computer-to-computer
exchanges to still make sense while retaining a customizable and inherently flexible
system? A system that is able to respond to ad-hoc datastreams in relation to project
specific demands.

Essentially, this boils down to what degree the data should be interpretable by the

computer or medium, or to what degree the computer is just responsible for the

transaction and storing and the interpretation is instead down to the human

consumer.

● Decentralisation of Models

A fallacy of the central object model is that not all contexts have the same set of
objects and properties. Likewise there will be an ambiguity when exporting an object
from a reduced context, as to what form this object should take in the super-context,
as there might be a series of possible answers.

An example is a material: for the architect this may relate to finishes, visual qualities
(which are rendered) or cost and sustainability aspects. However, for an engineer a

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 47

material will also, in the structural context, have strength, weight, elastic, plastic,
orthotropic qualities, etc. describing its predicted behaviour, which is irrelevant
information for architects and MEP engineers.

Asking one model to do everything also make it rigid and slow to expand, difficult to
modify. If your current case is not covered in the model, you have to do something
else, and your information simply cannot be exchanged. A decentralised network of
flexible models will be able to adapt accordingly.

● What Data is needed to capture the design process as a whole, not just the design

There is a tendency of object models to highly focus on the representation of the

actual built elements and their physical relations and properties. For data structures

existing in the precedents for auxiliary information such as sketches, voice recordings,

emails, preceding reports or design standards. However, the flexibility of the Speckle

format would allow for the encoding of such data.

● File-Based Technology vs a Database or Cloud-Driven

Data structures should be built around an ability to efficiently transfer information

across web and similar mediums, where concepts like diffing should be preferred over

always sending an entire model.

○

○ 2.3 Requirements for New PrismArch Ontologies

■ 2.3.1 Introduction

In the previous chapters we evaluated the characteristics of several significant existing AEC
ontologies, and it is clear that Speckle’s ontology and composable object model (
(https://dimitrie.org/thesis/discussion/#71-schemas-and-standards) is highly advanced
compared to many of the others, with the additional benefits of being both open source and
supported by several extra functions, such as the web interface, and mature database
integration.

We can therefore now introduce further functionality required specifically by PrismArch,
which has been highlighted across prior Deliverables, and evaluate how well the existing
Speckle framework supports them, then suggest minimal-effort solutions to aid integration
where necessary. These functionalities are:

- Interoperability Across AEC Disciplines
- Deltas & Database Integration
- PrismArch Asset Signature
- PrismArch Tags
- Architectural Requirements
- Structural Engineering Requirements
- MEP Engineering Requirements

https://dimitrie.org/thesis/discussion/#71-schemas-and-standards

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 48

- Texture Mapping
- VR Optimisation
- ML Optimisation (titled ‘Quality Diversity and Designer Modeling in PrismArch’)

■ 2.3.2 Ontology Requirements Outlined in Previous Deliverables

Interoperability Across AEC Disciplines
A set of desired objects and data types have been previously outlined in deliverable D1.1
Section 4.2 page 109. Further, this deliverable also outlines the need for flexible structures
and the need for appending custom or bespoke data at any point to any object. Both these
specific and unknown data structures will be considered when the overall approach is
outlined in the following chapter, based on the observations made in the precedent study.
The wider problem of interoperability has been covered previously in this report in chapter
2.2.1, so for further reference see that.

Deltas & Database Integration

Database requirements have been mentioned and referenced in previous documents, both
in relation to the intended use cases and from an implementation perspective. Speckle has
previously, in Deliverable D5.1, been suggested as the primary choice of database solution,
with a high prioritization stated for the asynchronous modes of collaboration and data
exchange. Deliverable D1.1 emphasizes the necessity of recording the development of a
project through all stages (e.g. using time-history documentation), as well as the need to
thoroughly search and query all entities added to projects on the PrismArch platform.
Additional requirements in D1.1 state the need for a singular, persistent database for all
stages in the design process, which should be accessible for any partner at any point,
assuming they have the requisite permission level.

With Speckle, every database insertion is a commit, and a history of all commits is stored for
the project’s lifetime. Speckle reinforces itself as the most suitable solution, as Speckle’s
JSON-based logic is also highly queryable.

Beyond the requirements stated above, PrismArch must also consider whether other efficient
methods for transmitting data can be incorporated. As mentioned in chapter 2.2.2, AEC
models are often saved in very large files, containing thousands or even hundreds of
thousands of elements. Having to resend all of these elements to the database - just because
a few among them have changed - is inefficient, and would reduce the likelihood that the
database can seamlessly integrate with realtime technologies such as VR. In contrast,
software programming uses highly efficient version control systems - such as GIT - that
identify the changes (sometimes called ‘deltas’ in software development) between the
current and previous versions of a file, and ensure that only those deltas are sent to the
repository. The process of determining the differences between versions of a file is called
‘diffing’.

In an AEC context, there are fewer examples of this process being attempted. The most useful
example for PrismArch is a research project called AECDeltas, that was undertaken by
representatives from both Speckle and BHoM, and which attempted to reconcile the “diffing”
process within their respective ontologies [AECDeltas]. This initiative will not be covered in

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 49

detail here, however the general problem is neatly formulated in this graphic, produced by
the AECDeltas consortium:

Traditional File-Based process Discretised File, and “Diffing’ process

Figure 2.3.2a - AECDeltas Diffing process [Image credits: AEC deltas]

In a file-based exchange of information (left), any singular modification necessitates a re-
export of the entire file. On the (right) however, the output is discretised, allowing the diffing
process to isolate and export only the critical deltas.

Figure 2.3.2b - Conceptual structure of the AECDeltas delta element [AECDeltas, Spec]

However, it is currently unclear how much of AECDeltas’ desired diffing functionality has been
integrated into Speckle 2. Some documentation exists that seems to suggest partial
implementation within the previous Speckle 1 system [Speckle Diffing].

As part of the next phase of Work Packages 4 and 5, we should therefore establish the
potential value of these processes for PrismArch, by testing first working prototypes and
benchmarking the relative lag between generating design elements in external software,
passing them to the database, and pulling them into the PrismArch VR environment. The
outcome of these tests - as well as further research into the current implementation of diffing
in Speckle 2 - will determine the value and viability of transmitting deltas within PrismArch.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 50

PrismArch Asset Signature
As specified within D1.1 Section 4.2 (C - Rules), there is a requirement for all PrismArch assets
to be uniquely identified, and clearly labelled so that there can be absolute assurance about
the authoring and attribution of every element - i.e. which individual and/ or company
created an asset, at what time, the level of visibility/ privacy assigned to the asset, and so on.

Therefore, whenever any PrismArch asset(s) are created, a paired Prism_Signature element
is created and integrated into the asset(s) prior to uploading to the PrismArch database. The
method for integrating these Assets and Signature is described in Section 2.4 Cross-
Disciplinary Foundation for Ontology.

The structure of the Prism_Signature has been kept intentionally basic: it must be a
lightweight entity that excludes complex data types, and produces only small increases to the
file size, thus ensuring that the creation of Signatures will not slow the flow of information to
the Prism Database.

This small entity ‘footprint’ would also mean that there is the potential for these Signatures
to be pushed to a wide array of other sources, beyond the Database. Automated alert systems
could be set up to notify users - via email, text message, Slack or other messaging service -
when new updates have been received by the Database, and could display the entirety of
each Signature, providing users with a compressed history of the commits being made by
different parties.

These Signatures can also be used to provide a thorough log of work created and changes
made during the life of a project, for accountability and ‘Golden Thread’ requirements
(outlined in D1.1 Section 2.1). However some consideration must be given to when
notifications concerning new Signatures is shared with other parties: as these Signatures are
generated for every asset created, it would be possible/ likely to overwhelm other users with
messages on days when multiple teams (or a single large design team) is working within the
PrismArch space.

See Specification Section (2.4.7) for proposed specification of the Prism_Signature Object.

PrismArch Tags

Alongside the requirement for the Prism_Signature, there must also be a flexible tagging
system, that allows users to freely annotate assets, both within their discipline, and for the
benefit of other design partners, clients and contractors. This requirement is discussed within
multiple previous Deliverables, most notably within D1.1 Section 4.2 (Taxonomies), D1.1
Section 4.4 (Item 2) and D3.1 Section 4.2 (Scenarios Developed as Part of Project Deliverables).

In an AEC setting it is frequently necessary to add temporary tags to objects, which are
removed or updated at a later date. For example, a “For Review” tag that must be deleted
and replaced with a “Change Accepted” Tag once a model has been checked and agreed upon.
Therefore flexibility and adjustment of tags is paramount.

We therefore believe that the existing tagging system present within Speckle is not highly
suitable. Speckle Tags are assigned to Speckle Objects as they are created, and as such they
are effectively ‘read only’ attributes of the parent object. They cannot be updated on their
own, and the only available option would be to remove the original object and tag and re-
commit the same object to the Speckle database, but with a new tag assigned. This approach
would work, however it is inefficient, slow and unnecessarily expensive in terms of data-

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 51

transfer, and increases the risk of data-loss, as the server connection could break during re-
committing and the object would no longer be stored in the Database.

Therefore we propose the creation of two tag-related objects that together produce the
necessary tagging functionality, while working within the existing Speckle ‘Push-only’
paradigm. These are self-contained entities that exist entirely outside the object that they
reference - thus they can be deleted or superseded without deleting or otherwise affecting
the object that they refer to.

The two objects are:

● Prism_Tag A unique tag name. Cannot be duplicated.
 e.g. the “For Review” Tag.

● Prism_TagConnection Assign a single Prism_Tag to a single
Prism_Object.
 e.g. the “For Review” Tag is assigned to Beam_A.
 e.g. the “For Review” Tag is assigned to Beam_B.

The same Tag can be assigned to multiple objects using multiple TagConnectors. When a Tag
should no longer be assigned to a specific object, the relevant TagConnector is either deleted
or superseded, but the Tag itself is never deleted.

Just like all other objects, both the Tag and TagConnector objects must contain all relevant
data to determine their origin, provenance, Sphere Level, etc. They are therefore assigned a
Prism_Signature just like any other asset, and then bundled inside their own Prism_Objects
like any other element.

Certain information tagged to an object must be perpetual and non-editable. For this reason,
all Tags and TagConnectors have an ‘Editable’ property flag assigned to them, which states
whether they can ever be edited or superseded in future, after their initial creation.

This unusual relationship between Objects, Prism_Tags and Prism_TagConnections is driven
by the specifics of the Speckle Ontology and Database connections. These proposals could be
revisited if our understanding of Speckle changes in future.

See Specification Section (2.4.7) for proposed specifications for both Tag Objects.

A) Architectural Requirements

Top level architectural information such as ‘project categories’, ‘project types’, and ‘project
scopes’ are vital inputs to cover all the possible scenarios of architectural projects. The Rhino
layering structure and both discipline-specific (internal) and cross-disciplinary task
distribution reflects this information topology.

Listed below are the primary naming conventions for the architectural discipline.
Architectural naming conventions require flexibility, and the categories should be
expandable.

● Project Typology

○ Civic

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 52

○ Cultural
○ Architecture

○ Education

○ Healthcare

○ Hotel
○ Industrial
○ Leisure

○ Mixed Use

○ Offices
○ Residential
○ Retail
○ Sports
○ Sustainable
○ Towers
○ Transport
○ Exhibition

○ Interior
○ Product
○ Fashion

○ Furniture

○ Infrastructure

○ Landscape

○ Urban Planning

● Project Scope Elements
○ Planning

○ Landscape

○ Architecture

○ Interior
○ FFE

○ Product Design

● Architectural Layers
○ Arch_

- Context/ Site

- Streets
- Transport
- Public spaces
- Soft landscape (e.g. trees and grasses)
- Hard landscape (e.g. water features, pools, walkways etc)
- Walls
- Slabs/ Floor Levels
- Ceilings
- Columns
- Facade/ Envelope

- Core

- Staircase

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 53

- Environmental (e.g. solar, wind etc)
- Zoning

- Areas
- Survey

○ IntArch_
- Context/ Site

- Finishes
- FFE (Free-Standing Furniture and Equipment)
- Integrated furniture

- Environmental (e.g. solar, wind etc)
- Areas
- Survey

B) Structural Engineering Requirements

An overarching list of data for the structural engineering discipline, as pointed out in section
2.3.2, can be found in deliverable D1.1. Here further elaboration on some particular objects
and data needed will be given. This will specifically focus on the model objects such as the
components of analysis models, as opposed to reports or building codes. IFC has no good
functionality for these types of objects, so no standardised schemas can be appropriated.
The engineering models will share some overlap with the architectural domain, as some
objects will have a direct architectural relevance, but it will also need some specific objects,
which are only related to analysis models.

An engineering subdomain would need to extend the relevant architectural object model in
two ways. One is the extension of the available object with the model specific inputs which
are missing from a default architectural object model. Some of these would be new non-
geometric objects, which would be non-existent in an architectural representation of a
building. These are primarily:

● Loads
○ PointLoads
○ LineLoads
○ Face Loads
○ Temperature Loads
○ LoadCases

● Advanced assignments
○ Release Conditions
○ Support Conditions

Some are extensions of objects which are already existing in the architectural domain, but
need further information to be useful for an engineer. This includes:

● Beam profile properties
● Structural Properties for Materials
● Reinforcement specifications

Most of these objects will be appended to a top level geometric object which will be an
analysis specific geometric object. These are the 0D, 1D, 2D objects discussed in section

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 54

2.2.4. As these may or may not map directly to an architectural element, these will have to
be separate entities compared to the architectural entities, due their abstract nature. The
level of abstraction, as in: “does an object represent an actual built element or simply
capture a condition?”, will have to be considered for interfacing with the architectural
domain. In the engineering domain the distinction would only be:

● 0D: Points for loads or support assignments
● 1D: Linear elements such as beams, columns and cables
● 2D: Area elements such as slabs, walls and shells

3-dimensional elements are considered so rare in building engineering applications that
they can be excluded for the most general use cases.

C) MEP Engineering Requirements

Due to the complexity and diversity of elements, tagging plays one of the most important
roles in MEP data management. The different elements within a project file contain
parameters which define different aspects of the elements. These parameters may contain
common information such as length, width or height, information regarding the position the
element is installed or other data such as installation or service date. The combination of the
3D element, the symbolic graphical representation, the parameters addition and even the
calculation values aid in the wider Building Information Modelling process. The tagging
process from an MEP perspective contain two parts:

Part 1 - Documentation Tagging:

The progress made over the years in digital information introduced new needs on data
management. Therefore, manufacturers, consultants and other relevant parties started to
request forms of classification to their models. This led to the development of two major
classifications systems, the Omniclass and the Uniclass classification systems. Due to the
complexity, broadness and diversity of elements within a construction project, each element
may contain Uniclass or Omniclass data. This aids in construction and facility management.
The development of BIM also introduced a set of documents which is used throughout the
lifecycle of a construction project. Information stored in the models are driven by definitions
and clarifications stated in these documents. These include the Employer’s Information
Requirements (EIR), the BIM Execution Plan (BEP), Task Information and Master Information
Delivery Plans, Mobilization Plan etc. The BIM Documentation contains vital information for
the project progress and everyone involved needs to follow whatever is stated for better
collaboration and increased effectiveness. As an example, if the project coordinates are
incorrect then the project file will not be placed properly and will be misaligned when linked
into a file. This causes wasted time, inconsistency and reduced collaboration.

What started as a British Standard in BIM evolved to a series of ISO documents and became
a worldwide norm. The ISO 19650 is the standard for Building Information Modelling properly
defining the information exchange between stakeholders and ways to form data to better
facilitate the information management within construction projects. To begin with, the
naming convention and related attributes as defined in ISO 19650 is as follows:

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 55

Source: BS EN ISO19650:2-2018

This information is defined in the EIR, BEP and other relevant documentation. These are
crucial to be followed and needed as well within the VR environment. A search for a document
would be identified by this naming convention and even before opening the actual document
we can understand the spatial arrangement (volume), the floor (level/ location) the type of
document (drawing, 3d model, sketch, specification etc) and the role (electrical, mechanical,
public health). If there is an agreed numbering then even the number could define what type
of document this is (for example 1000 for above ground drainage, 2000 for domestic water
services etc).

All this information can be pulled directly from the ISO19650 documentation and applied in
PrismArch. The documentation is intended to cover all disciplines. Furthermore, the BS EN
ISO 19650:2018 series contain the National Annex and better clarify the approach to
information management based on the British Standards.

 Part 2 - 3D Model Tagging:

The most common software used for BIM projects in MEP is Revit. Revit gives the ability to
work with diverse forms of information which may contain 2D information, point clouds, 3D
elements and manufacturer’s data. To facilitate such complex tasks Revit uses lots of data and
pushes the information to the user’s monitor or sheets through tags.

Tagging in Revit is driven by Annotation Families. The Annotation Families are files which
contain Parameters, labels and can also contain graphical elements such as arrows or 2D
linework. There is also the ability for nested items within the Annotation Families such as
white backgrounds. The Annotation Family pulls data from the actual element’s parameters
and pushes it to the label of the Annotation Family. Then the tag is presented in the viewport
and/ or sheet. Revit also gives the ability to tag elements within 3D views.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 56

Example of tag in a 2d plan view within Revit

Example of multiple tags in a 3d view within Revit

The nature and amount of data required within the projects is driven by the agreements the
appointing party makes with the appointed parties and is also standardized (e.g. RIBA Stages,
ISO19650 Status and Suitability codes) to avoid confusion during the information exchange.
Within PrismArch, the MEP project file should require at least the Project Information in the
form of tags. The Project Information is the initial data required in every construction project
and is covered in the form of System Family within Revit. This information should be
transferred in PrismArch and be able to be viewed as tags through a widget which would be
able to pull this information from the transferred file.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 57

Screenshot of the Project Information within Revit

Furthermore, the Project Units should also be transferred to ensure consistency. The Units
are defined in the early stages of the project, all participants use the same unit system and
this information should be also viewable within PrismArch. Revit has a specific command for
Project Units which brings up the following window in the user’s monitor.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 58

Screenshot of the Project Units Window within Revit

Additionally, the MEP elements will need to be covered based on hierarchical ontology within
PrismArch. Earlier the Uniclass and Omniclass were mentioned. These classification systems
can cover the hierarchical ontologies within PrismArch for MEP elements. The classification
systems have the ability to categorize all elements which exist within a construction project.

Example of A Uniclass classification system. Source:https://www.thenbs.com/our-tools/uniclass-2015

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 59

An example of Omniclass Classification System.
Source:https://www.csiresources.org/standards/omniclass/standards-omniclass-about

Screenshot of a multi-category schedule within Revit containing elements with Uniclass information

The tagging within PrismArch for MEP elements has a broad range of applications. The use of
parameters and tags will aid in the information management and clarify the scope and
purpose of the elements. Additionally, other forms of information can be exchanged through
tags to assist in the design solution. Another example is the acronyms to clarify installation
levels such as FTS (Fixed to Soffit), BOD (Bottom of Duct), FA (From Above) etc… This
information should be included in the tags and selected appropriately to assist people who
review the model. This will reduce time waste and add value to the project since the reviewer
can verify the amount of work and the effort given for the best results.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 60

■ 2.3.3 Texture Mapping
The process of displaying 2-dimensional texture information on the surface of a 3-dimensional
polygonal mesh is known as Texture Mapping: any arbitrarily chosen sample on the surface
of the mesh needs to correspond or ‘map’ to a pixel of a 2D- rectangular image. There are
various techniques that can achieve this kind of mapping, but the most common ones are UV
Maps and UV Projections. Other methods, such as Walt Disney Animation Studios’ Ptex
format, are either uncommon outside large studios or impractical in real-time applications.

UV Maps / Texture Coordinate Maps

Introduction

A UV Map of a polygonal mesh, is a collection of 2-dimensional vectors or coordinates in the
form of {u,v} where u denotes a normalized (0.0 to 1.0) position along the X-axis of a 2D
Texture Space, and v, accordingly, a position along the Y-axis. A mesh with N number of
vertices, typically stores N amount of UV coordinates.

3D Space Texture Space

Figure 2.3.3a - Mapping from 3D Euclidean space to 2D Texture space.

Modern graphics pipelines handle in the background (in the graphics shader’s fragment stage)
the smooth interpolation of UV coordinates across the surface of a triangle, using barycentric
coordinates. Therefore, the definition of the UV Coordinates on just each triangle’s corners
(vertices) is enough for the whole triangle to be mapped successfully from 3D space to 2D
Texture space.

The authoring of UV maps is typically performed at the modelling / texturing stage during the
asset preparation process. Dedicated software packages or modules inside more general 3D
software allow artists to fine-tune their UV Layouts according to their visual quality criteria.
This process is crucial in the architectural visualization, entertainment and game-art
industries, and typically performed by technical artists.

However, our user interviews with ZHA and AKT showed that it’s not common for
architectural designers, let alone structural engineers, to be aware of - or proficient in UV

https://ptex.us/
https://ptex.us/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 61

authoring workflows. This can result in exported models with missing or incorrectly set-up UV
coordinates, and by extension, to unpleasing or erroneous texture display.

In such cases, meshes without UV coordinates should be programmatically detected, and
their UV coordinates should be generated procedurally by the runtime, if a correct, faithful
material appearance is desired.

UV Unwrapping

UV Unwrapping describes the process of “peeling” or “flattening” the 3D surface of a
polygonal mesh so that all faces can lay flat and fit into a square area, while minimizing
stretching and distortions. Once each triangle of the original mesh has its flat conceptual
counterpart, then the mesh, no matter how complex, can be fully textured using a single
texture.

In cases of highly angular architectural models or other types of ‘hard-surface’ geometries,
the unwrapping can be reliably performed in an automatic way inside 3D software packages,
or even then game-engine itself, and works by conceptually ‘splitting’ (the geometries
themselves are not altered) the geometries either at their sharp creases, or depending on the
direction they are facing, and afterwards flattening the resulting ‘UV islands’ inside the square
2D texture space.

In cases of more organic-looking geometries, with complex topologies and large variations of
curvature and/or doubly-curved regions, the automatic, crease- or direction-based splitting
might not always produce the desirable texture continuity across the surface in question
(generating the so-called ‘texture seams’ in highly visible areas). In these cases, the UV author
has to manually define where the ‘seams’ should really be, by graphically picking the borders
of the conceptual UV islands. The UV Unwrapping algorithm will then attempt to split and
flatten the faces while respecting the user defined seams.

UV Unwrapping is typically the first step of an automated UV mapping procedure. It is far
from trivial to implement programmatically, but it can be skipped entirely if a geometry enters
the application’s runtime with pre-defined UV maps from the asset preparation stage.
Therefore, good quality geometry with clean UV maps is always preferred.

In cases where such a geometry is not possible to have beforehand, a high-quality C++ library
handling this stage is recommended. Suggestions:

● Rizom UV
● xAtlas
● UV-Packer

UV Packing

UV packing corresponds to the procedure of fitting the individual UV islands as closely as
possible, so that they achieve maximum coverage of the underlying texture space. Consider
the following image, courtesy of the commercial C++ library UVPackmaster:

https://www.rizom-lab.com/rizomuv_sdk/
https://github.com/jpcy/xatlas
https://www.uv-packer.com/download/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 62

Figure 2.3.3b - Comparison between 2 different UV Packing algorithms

A denser packing, leading to better utilization of the texture space. In simple words, objects
cover larger areas of their assigned textures, which results in higher texture detail of the final
rendered object.

UV Packing is typically the second step of an automated UV mapping procedure, coming after
UV Unwrapping. Like UV Unwrapping, it can be skipped entirely if a geometry enters the
application’s runtime with pre-defined UV maps generated during the asset
preparation/modelling/texturing stage.

Otherwise, a high-quality C++ library handling this stage is recommended, since the problem
of optimal UV packing is far from trivial. Suggestions:

● UVPackmaster 2
● Rizom UV
● xAtlas
● UV-Packer

Correct Relative Scale of UV Maps

In architectural visualizations, more often than not, the textures displayed on 3d objects
correspond to physical entities with very specific dimensions, for example bricks, wooden
planks, the specific grade of gravel, etc. Extremely common is also the re-use of a specific
texture by multiple different objects, not necessarily of similar size, for example a really long
concrete wall could share the same texture as a thin column. A problem that arises from the
above two facts is the incorrect relative scale of the UV Maps of different objects sharing the
same texture.

Imagine a simple case of two rectangular meshes:

One mesh is supposed to be 2m x 2m, and the other is supposed to be 10m x 10m. We desire
to texture the 2 meshes using the same texture, let’s say a square photograph of a concrete
wall. The photograph/texture captures exactly an area of 2m x 2m of the original, physical
wall that was photographed. Now, suppose that the 2 meshes have identical UVs, each one
spanning to the extents of the square texture space. If we were to apply the texture to both

https://uvpackmaster.com/software-development-kit-sdk/
https://www.rizom-lab.com/rizomuv_sdk/
https://github.com/jpcy/xatlas
https://www.uv-packer.com/download/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 63

meshes, the first mesh would look correct, because the texture’s 2m x 2m information would
fit in a geometry that’s 2m x 2m in 3D space. However, the second mesh would display an
incorrect, greatly stretched texture, since the texture’s 2m x 2m extents would be scaled to a
10m x 10m area. One solution to this problem would be to scale the UV coordinates of the
second mesh and make them 5 times larger, so that the texture would occupy only 1/5th of
the surface on each dimension. This would of course introduce texture tiling, which might or
might not be desirable, but at least the apparent scale of the texture would be correct.

What the aforementioned problem implies is that, at least for architectural visualizations, the
UV coordinates of an object should be authored with consideration to the texture that is going
to be applied to it, the theoretical ‘real-world’ size that the texture covers, and the object’s
dimensions.

Given that a PrismTexture object representing an architectural material can (and should)
include information about its ‘real-world’ coverage, and that we can always query the largest
/ smallest side of a 3D object programmatically, what is suggested is an algorithmic procedure
that scales the UV map of each 3D object according to the PrismTexture that is applied to it
at any moment.

Application of a new texture during runtime, should trigger a rapid on-the-fly scaling of the
object’s UV coordinates.

UV Projections

There are cases where the manual / semi-automatic generation of UV maps is impractical,
sub-optimal or simply unnecessary, depending on the geometric properties of the object to
be textured, and the type of texture that is required. In these cases, a procedural mapping is
preferred over an explicit one.

Such a ‘UV Map-less’ texture mapping can be achieved by utilizing one of many geometric
projections, very much like the process of geographical projections which mathematically
map the surface of ellipsoids (i.e. the Earth) into 2D maps.

Common uses of such procedural mapping are tileable, stochastic and near-stochastic
textures, such as textures resembling random noise when viewed from a distance and
typically natural-looking materials without precise geometric shapes. Such materials include
gravel, sand, soil, scratched metal and other kinds of tear / wear, in-situ molded materials like
concrete, fabrics etc.

Planar

This projection is similar in concept to a movie projector, but the associated image is projected
onto the surface orthographically, meaning the projection rays travel perpendicular from the
virtual projection plane onto the surface. This projection type is great for flat or nearly flat
surfaces. Other instances are likely to cause undesirable stretching of the texture. You can
specify the axis direction, either X, Y, or Z, that you want the projection to face.

Unreal Engine provides this functionality with the LocalAlignedTexture and
WorldAlignedTexture nodes.

https://unity.com/products/unity-artengine
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/Functions/Reference/Texturing/#localalignedtexture
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/Functions/Reference/Texturing/#worldalignedtexture

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 64

Cubic
Similar to planar, but the texture is planar-projected through a surface from all three axial
directions, X, Y, and Z. A polygon receives a certain projection, based on its normal direction.
This projection type is best on cube-shaped objects, and occasionally on detailed surfaces
where texture seams are not of great concern. Unreal Engine provides this functionality with
the WorldCoordinate3Way Node.

Cylindrical

The texture image is warped into a cylindrical shape and projected onto the surface. Very
useful in texturing cylindrical shapes, for example, when labeling on various cans and bottles.
Unreal Engine provides this functionality with the Cylindrical UVs node.

Spherical

The texture image is warped into a spherical shape and projected onto a surface. This is useful
in texturing round objects, for example, planets and sports balls. Spherical projections are
also useful in mapping 360° panoramic images for use as environment maps. Surfaces
perpendicular to the projection produce undesirable stretching of the texture

Tri-Planar Mapping

In the last decade, tri-planar mapping has proved to be a versatile, high-quality technique for
mapping textures on arbitrary geometries without UV maps, while avoiding the stretching &
seaming problems of the classic projection types.

Tri-Planar mapping is similar in principle to Cubic mapping, but is way more sophisticated
regarding the smooth blending of the texture projections coming from different directions.
The end result tends to look like a uniform texture wrapping around the surface, with no
visible start-end seams. This technique works best with stochastic, natural or noisy looking
textures, although if implemented correctly it can produce adequate results with more
technical, geometric textures. Ben Golus provides an excellent guide on the correct
implementation of Tri-Planar mapping, applicable to any game-engine.

An example of how the Tri-Planar method can be built as a Material Function in Unreal Engine,
is demonstrated here.

https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/Functions/Reference/Texturing/#worldcoordinate3way
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/Functions/Reference/Texturing/#worldcoordinate3way
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/Functions/Reference/Texturing/#cylindricaluvs
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/Functions/Reference/Texturing/#cylindricaluvs
https://bgolus.medium.com/normal-mapping-for-a-triplanar-shader-10bf39dca05a
https://odederell3d.blog/2020/11/02/ue4-triplanar-projection-mapping-setup/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 65

Figure 2.3.3c - Tri-Planar mapping result (left) and concept (right) (Ben Golus)

Procedural Stochastic Texturing by Tiling and Blending

A notable, high-end mapping technique that was first presented in 2018 by Heitz and Deliot
is called Procedural Stochastic Textures by Tiling and Blending [Deliot and Heitz, 2018]. The
algorithm is a ‘simple tiling-and-blending scheme augmented by a novel histogram-preserving
blending operator that prevents the visual artifacts caused by linear blending’[Deliot and
Heitz, 2018] . It works by sampling the original texture with hexagonal tiles and then making
sure that each point on the textured surface is colorized by a blend of three tiles, as
demonstrated here:

Figure 2.3.3d - Procedural stochastic texturing. Hexagonal “stamp” selection (left) and blending (right)
[Deliot and Heitz, 2018]

This technique produces excellent, state-of-the-art results even on large surfaces, without
signs of texture repetition. It works ideally if the input texture is of stochastic /noise-like

https://drive.google.com/file/d/1QecekuuyWgw68HU9tg6ENfrCTCVIjm6l/view

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 66

nature, like rock or gravel textures, but fails miserably on inputs that present a strong pattern-
like organization, like brick-walls.

Unreal Engine’s (4.26 and higher) Texture Variation Node produces similar results out-of-the-
box, although with somewhat inferior blending of the randomized patches [Unreal
TextureVariation].

Our proposed minimal specification for a Prism_Texture schema is detailed in the later
Specification Section (2.4.6).

■ 2.3.4 VR Optimisation

2.3.4.1 Asset Optimisation

Mesh Merging / Batching

In a modern render pipeline, such as the one implemented in Unreal 4, the CPU carries out a
significant workload, before the GPU takes over: working out which lights affect each object,
setting up the shader and shader parameters, and sending drawing commands to the graphics
driver, which then prepares the commands to be sent off to the graphics card.

All this “per object” CPU usage is resource-intensive, and in the case of a significant number
of visible objects, it can add up. For example, if a model contains a thousand triangles, it is
much easier on the CPU if they are all in one mesh, rather than in one mesh per triangle
(adding up to 1000 meshes). The cost of both scenarios on the GPU is very similar, but the
work done by the CPU to render a thousand objects (instead of one) is significantly higher.

Thus, a very common technique for reducing the amount of work the CPU needs to do, is the
reduction of the visible object count. We can achieve that in three complementary ways. By:

● Combining close objects together, by ‘merging’ their meshes.
● Using fewer materials in our objects by putting separate textures into a larger

texture atlas.
● Using fewer things that cause objects to be rendered multiple times (such as

reflections, shadows and per-pixel lights).

An important consideration for the merging of objects is that only one Material has to be used
for the entire mesh. Note that combining two objects which don’t share a material does not
give any performance increase at all. The most common reason for requiring multiple
materials is that two meshes don’t share the same textures; therefore to optimize CPU
performance, asset designers need to ensure that any objects they combine share the same
textures. In large models with complex assemblies and a lot of materials, the preparation of
a single atlas for each merged mesh can be a very time-consuming process for the modellers.

Drawbacks of Mesh Merging

While the merging of close-by objects in singular polygonal meshes is a great way to reduce
draw-calls and consequently greatly increase the performance of massive models, this
technique poses significant drawbacks in terms of object manipulation flexibility. The core

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 67

issue is that such a consolidation of individual objects into larger monolithic display assets,
would immediately lead to individual objects losing their ontological autonomy, including but
not limited to:

● Ability to be picked / selected / transformed by the user.
● Ability to be queried about their properties.
● Ability to be edited and saved.
● Ability to become hidden / colorized according to selection criteria or filters .

For example, a user might wish to see only the walls of the first floor of a building, all the
slabs, and just a specific door in front of them. Afterwards, they might reset the filters, so that
the whole building is visible, or filter out everything but a single element. Furthermore, they
might decide to select a piece of geometry, then change its position and its material, only to
completely delete it afterwards.

Such a de-coupling of display meshes from the data model of the objects they represent,
means that an extra layer needs to exist between them, in order to keep them in sync.

Potential Solutions

Technical solutions to the above problem can certainly be devised, although their
maintainability, scalability, performance and overall user-friendliness are subject to further
research and not examined in this document. Nonetheless, such solutions should at the very
least implement an encoding of each object’s ID as well as its various categorization tags onto
the final merged mesh’s vertices, as arbitrary vertex attributes. This would ensure that any
part of the mesh, if queried, could link back to the data model of the original object owning
the queried point/triangle.

If a user wished to edit an object that is part of a merged mesh, then that model would need
to be loaded temporarily as a separate entity, until the user’s operations are completed. The
edited model would then need to be injected back into the merged mesh, replacing its
previous triangles.

With regards to filtering geometries based on multiple selection criteria, a set of look-up
tables / data textures would need to be maintained and updated in real-time, according to
the selection criteria. All the objects would need custom shaders which would use each
vertex’s attributes to look-up whether this part of the geometry should be shaded depending
on the state of the look-up tables.

Another possible solution would be the on-the-fly merging and splitting of display meshes,
based on the user’s desired action. Beyond the logistical nightmare of deciding which meshes
should be combined and split, the performance and memory allocation costs of such a
technique would need to be evaluated for VR frame-rates.

Unreal Engine’s ‘Nanite’ Virtualized Geometry System

Finally, Unreal’s recently announced Nanite system for the virtualization of mesh geometries
appears to be a very promising solution for efficiently rendering hundreds of millions of
polygons in interactive frame-rates, eliminating the need for techniques such as mesh
merging and the manual authoring of multiple levels of detail for each mesh. Nanite, marked
as Early Access at the time of writing, is responsible for procedurally generating a hierarchy
of triangle clusters at multiple levels of polygon reduction, and then choosing the appropriate
clusters to render depending on their visibility and distance from the camera. Geometries
that are far from the user can afford to be rendered with only a few triangles, while the

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 68

original high-resolution triangles are selected for parts that are very close to the user. That
way, the total amount of triangles and the total number of draw calls per scene is kept more
or less constant.

The investment in an early access technology carries significant risks, which should be
weighed against the technical debt of the other potential solutions mentioned above.

Minimizing Polygon Count

Regarding the actual geometry of a model, there are two main optimization actions that
should be considered by the modellers.

● The minimization of triangle count.
● The minimization of UV mapping seams and hard edges (doubled-up vertices).

Note that the actual number of vertices that graphics hardware has to process is usually not
the same as the number reported by a 3D application. Modeling applications usually display
the number of distinct corner points that make up a model (known as the geometric vertex
count). For a graphics card, however, some geometric vertices need to be split into two or
more logical vertices for rendering purposes. A vertex must be split if it has multiple normals,
UV coordinates, or vertex colors.

Normal Flipping

An extremely common problem in workflows transferring CAD data to game engines, is the
occasional incorrect orientation of surface normals. This problem is so notoriously hard to
solve automatically for every possible case that it’s usually deemed more practical to solve it
manually, by bringing the model back into the 3d modelling package, identifying the flipped
faces and manually applying a re-orientation command. A way to bypass this problem is
through the use of double-faced shaders in the game-engine, sacrificing runtime performance
(since the faces have to be rasterized twice) for workflow seamlessness. Otherwise, either a
high-end normal-flipping SDK has to be integrated in the engine, or a Quality Assurance pass
has to be completed before the models are officially registered in Sphere Level 2, 3 or 4.

Geometric LOD (Levels of Detail)

A widespread, decades-old technique that aims to reduce the amount of polygons being
drawn without sacrificing detail is LOD, or Levels of Detail. Each entity is associated with a list
of possible geometric representations of decreasing quality / fidelity, that are automatically
swapped at render time depending on the virtual camera’s distance from the object in
question. This technique is prevalent in the visualization of forests or other scenarios where
there are millions of elements to be drawn, the majority of which are very far from the user /
player.

The drawback of this technique is that for each object to be displayed, the artist / modeller
has to prepare more than one asset, increasing iteration times and making even simple
changes inefficient.

That being said, a possible list of LODs is the following:

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 69

● LOD 4: Billboards or Impostors.
● LOD 3: Bounding Box / Convex Hull / Rough Voxelization.
● LOD 2: Polygon Reduction: Low-Quality.
● LOD 1: Polygon Reduction: High-Quality.
● LOD 0: Original CAD Geometry.

The above levels of detail (1-4) could in theory be generated automatically on model export,
or even on-the-fly when a model is loaded in the game engine, thus reducing the pressure on
asset designers / creators. Generative Adversarial Networks could be trained to generate
models of minimum perceptual loss compared to the original, while trying to conform to a
maximum triangle budget/ceiling.

Whether this extra geometric information is included in the model description or generated
in-engine will determine whether the Data Model of Prism Objects (shared via Speckle) should
make provisions for them. At this juncture, we believe that the most effective strategy for
determining whether any of the asset optimisation approaches described above are
necessary within PrismArch, is to carry out several tests of importing different AEC models
into the PrismArch VR space. These models must encompass a range of detail levels, model
scale, with and without element texturing, and so on. These tests should be undertaken as
part of D5.2 - “first prototype of the VR-aided design platform”.

Lightmap Pre-Baking

In situations where real-time raytracing is not possible due to performance / hardware
constraints, all light interactions such as Soft Shadows, Global Illumination and Ambient
Occlusion can be pre-computed and stored in 2D Textures called Light Maps, which are
sampled in render-time and blended with the objects’ assigned materials / textures, thus
replicating the effect that light would have in the scene, without the cost of recalculating the
ray bounces in every frame. A light map usually contains the lighting information of a big
number of objects in the scene, and each object contains information about where exactly it
should sample the light map in order to obtain its relevant lighting data.

The lightmapping stage itself has to be performed off-line, in the engine itself or through the
use of a 3rd party rendering software able to produce light maps, but it is certainly not a
procedure that can happen on-the-fly, since for large models it can take from minutes to
hours to compute. See Unreal’s Lightmass feature. [Unreal Lightmass]

Modern game engines provide ways to bypass the need for light maps, by using real-time
Global Illumination which provides less accurate, but real-time results. However, these
techniques cannot work with dynamically inserted / generated geometries, because they
require a pre-processing step as well. See Unreal’s Lumen feature. [Unreal Lumen]

If a client or user utilizes Nvidia RTX hardware, then photorealistic, real-time raytracing
(including recursive reflections and refractions) is possible, which eliminates the need for any
pre-processing stage.

2.3.4.2 Render-time Optimisation

GPU Instancing

Objects sharing the same geometry irrespective of differences in position, rotation or scale,
and the same shader properties (commonly referred to as ‘material’) can be instanced.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 70

What this means is that each one of these objects only needs to refer to a shared, singular
geometry object in the system’s memory, and all of them can be drawn using a single draw-
call, as if they were a single object.

This technique, ubiquitous in computer graphics, follows the Flyweight [Nystrom, 2014]
programming pattern, and reduces both the runtime memory footprint of the
game/programme, since only one mesh can serve millions of instances, but also the runtime
performance, since the CPU has to issue significantly less draw-calls to the GPU, a notoriously
‘slow’ operation.

Figure 2.3.4.2a - Objects without instancing [Nystrom, 2014]

Figure 2.3.4.2b - Objects with instancing [Nystrom, 2014]

This technique has been known to CAD software for decades (commonly referred to as
‘Blocks’ or ‘Xrefs’) since it suits reasonably well the types of geometries one commonly
encounters in architecture and engineering: identical transformed copies of complex
elements and assemblies (facade units, columns, staircases, detailing etc).

Problems arise when CAD models designed in a specific software package making heavy use
of instancing are imported in another software which does not retain the instancing
information. This problem used to be extremely common and a huge point of frustration in
the architectural visualization industry during the last two decades, where heavily instanced

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 71

CAD models provided by architecture studios, were often naively converted by the importers
used in visualization studios into near-impossible to work with plain polygonal meshes, that
discarded any instancing information.

The problem can be exemplified quite easily:

Imagine a polygonal mesh -let’s say a detailed representation of a building containing trees,
facade elements, digital humans etc- which contains 100 MegaBytes worth of information.
Now imagine that a designer decides to create 40 identical copies of that building, by simply
duplicating the original geometry (no instancing). The total amount of memory required would
be:

40 x 100 MB = 4 GB

easily saturating the Video RAM of a middle-range graphics card in 2021. If the designer
chooses to instance the geometry instead, given that a 4x4 transformation matrix defining the
position, scale & rotation of an instance weighs typically 64 bytes, and arbitrarily allowing an
extra 960 bytes per-instance for extra information (reference to the original object, instance
ID, custom per-instance data), then the memory footprint becomes:

100MB + 40 x 1MB = 140 MB

Without describing explicitly what this enormous difference means for the various parts of a
rendering pipeline, it becomes immediately clear that Instancing alone can provide one of the
most significant - if not the single most important - performance gains in a geometry
visualization environment.

Therefore, any effort to design a high-performance, scalable geometry translator of CAD files
to RT3D (real-time 3D) engines, should make sure to provide full support for reading Instanced
Geometry and reconstructing it using the engine’s instancing method. It follows that any
Interchange Format / File Specification should provide full support for describing Instanced
Objects.

Instancing is nowadays supported in every major 3D software package and file exchange
format. Some notable examples, relevant to the present research programme include:

● Speckle Blocks
● Unreal Instanced Static Meshes
● FBX Instances
● USD Instances
● Rhino3D Blocks
● Maya Instances
● Sketchup Components
● Unity GPU Instancing

Further Reading in Unreal Art Optimization: GPU & Rendering Pipelines

● Speckle Blocks

Since April 14 2021, Speckle 2.0 beta supports Blocks coming from Rhino and AutoCAD
[Github commit]. As part of the same commit, Speckle’s Unreal engine connector,
currently in Beta, appears to support importing of instanced geometries by re-using
objects it has already imported, when needed. [Github code]. A brief introduction to
how the Speckle Block system works can be found at the [official blog].

https://speckle.systems/tutorials/blocks-autocad-rhino-and-revit/
https://unrealcommunity.wiki/using-per-instance-custom-data-on-instanced-static-mesh-bpiygo0s
http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=files/GUID-0D483705-23D9-476D-A567-09609396B190.htm,topicNumber=d30e10223
https://graphics.pixar.com/usd/docs/api/_usd__page__scenegraph_instancing.html
https://wiki.mcneel.com/rhino/usingblocks
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Maya/files/Transforming-objects-Copies-vs--instances-htm.html
https://help.sketchup.com/en/working-components-sketchup
https://docs.unity3d.com/Manual/GPUInstancing.html
https://unrealartoptimization.github.io/book/pipelines/
https://github.com/specklesystems/speckle-sharp/commit/abd3665b9975da190f4f0777a59ea1bd91265c24#diff-f26b3b566e9f3fbeb7fd7934713cd8b75a522fd3d246c0f4467d4b594a4c9134
https://github.com/specklesystems/speckle-unreal/blob/c9e978351d5bda9ffa2e88e06595d208af016022/SpeckleUnrealProject/Plugins/SpeckleUnreal/Source/SpeckleUnreal/Private/SpeckleUnrealManager.cpp#L122-L207
https://speckle.systems/tutorials/blocks-autocad-rhino-and-revit/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 72

● Unreal Engine Mesh Drawing Pipeline

An advanced description of how Unreal’s mesh drawing pipeline works, including the
setup of Draw Call Batching, can be found at the [official documentation].

As with the prior Asset Optimisation section, we believe that testing must be carried out
within the PrismArch VR platform to determine the necessity of including any Render-Time
Optimisation strategies. These tests should be undertaken as part of D5.2 - “first prototype of
the VR-aided design platform”.

■ 2.3.5 Quality Diversity and Designer Modeling in PrismArch
Within this section we will provide an outline of the basic Artificial Intelligence functionality
that we intend to provide within PrismArch. Having described this, we will then detail the type
of schemas (here referred to as ‘data structures’) that must be implemented, to allow these
processes to occur.

2.3.5.1 Functionality

As presented in [D2.1], Artificial intelligence in PrismArch aims to provide an assistive
technology driven by the user in order to edit items collectively and in an informed manner.
As described in Prismarch DoW, this assistive technology is envisioned through the algorithms
of Quality-Diversity Search (QD) and Designer Modeling (DM).

D2.1 highlighted that MAP-Elites [Mouret and Clune, 2015] is considered the most suitable
QD algorithm for the problem at hand, due to its operational simplicity and its relatively small
number of hyper-parameters. Some existing applications of Map-Elites to design-related
problems can be found in the works of [Gaier et al. 2018], [Sfikas et al. 2021], [Galanos et al.
2021].

As far as designer modeling is concerned, there are a variety of algorithmic approaches that
can be applied to the available data. One of the earliest relevant studies [Liapis et al. 2014]
showcases a design tool that incorporates computer generated suggestions which appeal to
the human user. Other relevant approaches are also available, including Design Style
Clustering, as shown in the work of [Alvarez et al. 2020], or using a Designer Preference Model
for driving Evolution, as shown in the work of [Alvarez and Font, 2020].

The following subsections start by dealing with the problem representation in the context of
QD search and the process of generating solutions. They then move on to explaining the
process of user interaction with the QD system, as well as the process of data collection that
can be used to support the DM process. Interdisciplinary constraints are also discussed as an
important part in the context of QD. Finally, the last subsection discusses issues related to
data formats related to both QD and DM.

Problem Representation

In the context of AI assistive design for PrismArch, we can define the problem representation
as an abstract description of the solution that captures a number of topological characteristics
such as, for example, connections between specific rooms, as well as a number of other
important features, such as the target surface area of each space unit, but without specifically
describing how those features are to be attained. Alternatively, the problem representation

https://docs.unrealengine.com/4.26/en-US/ProgrammingAndScripting/Rendering/MeshDrawingPipeline/#drawcallmerging

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 73

can be viewed as a set of hard constraints which differentiate solutions into feasible (the ones
that satisfy them) or infeasible (the ones that do not satisfy them). By incorporating this
approach, we consider that designers themselves should define the problem and negotiate it
with a potential client, by analyzing the problem definition itself or potential concrete
solutions that it produces.

QD System Processes

There are many approaches for the generation and transformation of solutions with a chosen
representation. On one end of the spectrum, one could apply a completely random
generation and mutation which would generate results with a very small chance of being
feasible (i.e. satisfying at least the hard constraints). On the other end of the spectrum, one
can design specially crafted generation and mutation methods that guarantee feasible
solutions with the caveat of more computationally intensive processes and less variety in
results. Our chosen approach lies somewhere in the middle of those edge cases, as an attempt
to get the best of both.

The generation process starts by subdividing the space randomly. It then utilizes the
generated regions (assigns them with a specific function) while considering some connectivity
constraints and finally adds more specific details such as placing doors and windows. The
mutation process is a bit more complex. It operates in a hierarchical fashion and can occur in
one of three ways: mutating the spatial subdivision (which may affect the cells’ utilization and
placement of doors and windows), mutating the regions’ utilization (which may affect the
placement of doors and windows) or affecting the placement of doors and windows (which
does not affect anything else). Both the generation and the mutation processes do not
guarantee feasible solutions. The discovery of feasible solutions is ensured through the
broader operation of the evolutionary algorithm.

Finally, the evaluation of the evolving content, as well as aspects of the genetic operators and
initialization strategies, are dependent on an interim connectivity graph or adjacency matrix.
As highlighted in [Section 3.1, D2.1], connectivity graphs are vital simplifications of the design
problem and have often been used to assess the quality of floor plans in terms of proximity
and doorways between rooms. As noted in [Section 2.1.9, D2.1], usually such connectivity
graphs are provided by the client and are not open to negotiation; this is the assumption for
the current prototype of PrismArch’s AI algorithms. However, the graph itself could be
evolved as discussed in [Section 2.1.3, D2.1] as a step prior to spatial tessellation. Some
constraints on what could be evolved and the ability for human control over aspects of the
graph (e.g. not allowing the removal of certain nodes/rooms or edges/connections) would be
necessary in this case. These constraints can easily be encoded in the genetic operators, for
instance by blocking mutations for nodes marked as “frozen” [Galanos et al. 2021].

Interfaces Definition for Cross-Disciplinary QD Assistance

This section presents several ways that a designer could become more involved in the design
process, apart from describing the problem and the algorithm settings and receiving the
results at the end.

Direct interaction with the solution representation: There are several ways in which the user
may directly interact with the solution representation, in the context of the QD assistive
system. First of all, they may generate their own solutions without even utilizing the
evolutionary algorithm at all. Alternatively, they may choose to directly modify an existing

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 74

solution generated by the system. While generating or modifying solutions, a designer can
receive all the available “analytics”, as described in [section 3.2 and 4.2, D2.1], during their
design process and thus make more informed decisions or observations about their designs.
Furthermore, user-generated designs can be used as the initial population of the evolutionary
algorithm, thus providing a potentially better starting point for evolution instead of randomly
generated solutions. Alternatively, a designer may interfere with the generative process by
imposing specific restrictions on what parts of the solution representation the algorithm can
modify.

Finally, the designer may even revisit the problem definition, after having examined a set of
solutions. Slightly changing the problem definition can either be treated as part of a
completely new process of search or, alternatively, as part of a continuous process of search
that does not discard the previously generated solutions, despite the fact that they were
generated through different feasibility criteria. Changing the problem definition is likely to
cause infeasibilities in the existing set of solutions, however the evolutionary process (through
mutation and selection) should be able to gradually correct the solutions, based on the new
constraints.

Indirect interaction with the solution representation: Apart from a direct involvement of the
user with the design process, their interaction may also be indirect. In this case the user does
not actively alter or constrain the solution space, but is guiding the evolutionary process
through their preferences.

The first way of doing so is through interactive evolution [Takagi 2001]. In this case, the user
is presented with a set of possible solutions and asked to choose the ones that they prefer.
Their choice may be based on any type of subjective criterion, or take into account the
analytics and measurements that the system provides for each one of them. As soon as the
user selects a subset of solutions, they are treated as the initial population for the generation
of the next set. This way, the user’s preference is directly treated as a form of fitness function,
in the algorithm’s operation.

In line with the work planned in WP2, the most ambitious and general way in which the
designer can indirectly control the solution representation is through a designer model. The
user’s preferences may be captured in the form of a designer model [Liapis et al. 2013], via
supervised machine learning (or, potentially, unsupervised learning when clustering groups
of designers). After such models have been generated, they can be utilized as fitnesses,
constraints, or custom representations [Liapis et al. 2014] for the evolutionary algorithm that
adjusts various qualities of the generated content towards a specific style, or set of
preferences that mimic the style of a designer persona.

Data Collection for Designer Modeling

Apart from the intrinsic aspects of the Quality Diversity assistive system, the algorithm will
also exist within a specific context of operation, where human designers interact with it,
controlling some or all of its parameters and interfering with its operation in various ways.

The data-records of this human-AI interaction will form the basis for the generation of
designer models which can represent (predict, reproduce) the behaviour and/or preferences
of the designers that have used the system for a period of time. Data collection will adhere to
the overall data organization and ontology (see Section 2.3.2) of the PrismArch application,
respecting issues of intellectual property and providing access to the data only to their

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 75

respective owners. Any potential aggregation of data in the form of analytics or in the context
of designer modeling that may depend on data of mixed ownership will have to be agreed
upon between the respective owners.

As described in [Section 2.2.4, D2.1], there are several ways in which the designer can interact
with the solution space and specifications, which also influences the type of data that can be
collected regarding this interaction.

At its most basic, data collection will be in the form of timestamped events that describe
instances of actions of specific subjects within the design space. In other words, every event
describes “who did what, when”. For example, if a user is directly creating an asset through
the design interface of PrismArch, the system may be automatically collecting all of the
actions that a designer takes while designing a “solution” from scratch. Depending on the
context of use, it is possible that this approach can generate an unnecessary amount of data.
In this case, the data collection can occur in predefined time-intervals, so as to reduce their
volume but still retain a compressed (lossy) overview of the design process. This mode of data
collection could be then used in order to train neural networks that can “mimic” the
designer’s behavior, i.e. design in a style that resembles that of a specific designer or a set of
different designers.

In the second mode of interaction, instead of the hands-on design activity, the recorded data
could include the designer’s preferences. In other words, the data collection could keep track
of which solutions (out of a larger set of solutions) the designer found to be preferable. This
mode of data collection could be used in order to model a specific designer’s “preference”,
i.e. a model that can predict the selections that a specific designer would make. As soon as
such a model is trained, it can then be “embedded” in the algorithm’s operation, effectively
generating a hybrid AI that mimics some aspects of human preferences.

Cross-Discipline Principles, Rules, Constraints of QD and DM components

Interdisciplinary constraints are an aspect of the design process that is especially important
in the context of large-scale design projects. The examples of evolutionary design that can be
found in the relevant literature [Gaier et al. 2018], [Sfikas et al. 2021], [Galanos et al. 2021],
however, are usually focused on problems of relatively small scale or on problems of a larger
scale but from a relatively narrow perspective (within the bounds of a single discipline).
Feedback from the AEC industry partners of PrismArch on cross-discipline principles, rules,
constraints was collected in preparation of D2.1, adding an important dimension to the
literature review carried out.

As extensively described in [Section 3.2.1, D2.1], all AEC partners were able to recognize the
fact that their design activity is constrained by external factors (including the activity of other
disciplines), as well as the fact that their domain knowledge and responsibility introduce
constraints that other disciplines must recognize and respect. Furthermore, all disciplines
recognize the importance of effectively communicating those constraints throughout all the
stages of the design process and, in some cases, a large emphasis is placed on the initial stages
of design, where a number of important and high-level design decisions are made.

2.3.5.2 Data formats for DM and QD

The main prerequisite for performing any type of Designer Modeling is the access to data that
describe the activity of designers in the context of PrismArch. An example of designer activity
that could be a starting point is the designers’ interaction with elements of the VR space, such

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 76

as selecting and deselecting 3D elements. Having access to the logs of such simple actions,
accompanied by meta-data like time-stamps, user IDs and other meta-information about the
selected objects could be a starting point for an initial prototype of Designer Modeling.

As far as QD is concerned, a special kind of data-structure is required. Some of the most
important characteristics of this data-structure include the following: 1) the ability to
represent a topological description of architectural designs, including the existence of
discrete space units (rooms), their interrelations (connection, proximity) and other
properties. 2) the ability to represent geometry in a way that corresponds to the current
topological representation, i.e. a specific geometrical implementation of a given topological
description. 3) The ability to transform (mutate) solutions holistically, affecting both topology
and geometry and being able to inspect and control their proper relation. Such a data-
structure has already been prototyped by the UM development team and is currently in a
process of refinement, so as to be as flexible as possible and not tied to specific geometric or
other constraints. Converting this data-structure to a typical 3D model format (such as an
“.OBJ” geometry file, or a Rhino file “.3DS”) can and will be undertaken by the UoM team.
Converting it to a BIM file (for example Revit) may also be feasible through an intermediate
file-format, possibly through the Speckle data processing layer.

■ 2.3.6 Auxiliary Data

A typical AEC project quite often needs to be complemented by a collection of extraneous
data references beyond BIM geometries, such as image-based media (image and video
files), audio recordings, text-based media (e-mails, reports), source code, datasets (binary
data, excel tables, databases) and other arbitrary files. This concept has been previously
outlined in several Deliverables, such as D1.1 Section 3.1a “Case Study 1” and Deliverable
6.1 Section 1.1 d.3 “PrismArch Core Functionalities”.

The exact format of some of these external files can be reasonably predicted due to their
widespread adoption and standardization. For example, .JPG, .PNG, .GIF and .TIFF formats
cover the majority of the image file types that one would encounter in a typical AEC
workflow.

It is fair to assume, however, that only a subset of all possible files that might be attached
during the lifetime of a project can be predicted and accounted for in the initial design of
the PrismArch Library.

Although it is impossible to cover the extent of all future additions, the principles of
extensibility and scalability highlight the need to approach such auxiliary data in the future
without major restructuring of the original class hierarchies.

Ideally, each new format addition should only require the definition of a new Parser, a new
Renderer and a new Handler, in accordance with the Visitor pattern. These three objects are
responsible for providing the new operations that should be applied on the file type in
question.

● The Parser would take care of translating the binary data of the file in question, to
the actual object structure it should represent. That external object would eventually
be distilled into a known type or a collection of known types.

https://sourcemaking.com/design_patterns/visitor

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 77

● The Renderer would take care of visually representing the object that the parser

creates inside the 3D scene of the Prism VR application.

● The Handler would define all the user interactions that can be applied to the visual
representation of that object.

When it comes to what file formats one could encounter, we could separate them in a few
logical categories:

● Image-based media, typically compressed and encoded using some protocol. These
could be static images, or video files, and can be represented as selectable flat
geometries in the VR scene or as flat, full-frame imagery.

● Audio, typically compressed and encoded using some protocol. Audio files can exist
in a 3D scene and be experienced spatially. In certain cases, the exact location of an
audio file is crucial, as it might be related to acoustics analyses performed at exact
locations.

● Text-based media, such as e-mails and simple text documents. These files don’t
typically correlate to a specific location in 3D space, and can be represented in VR
through a full-frame text reader interface, with text-selection and text-editing
capabilities.

● PDF documents, which due to the specificity & versatility of the format, can be
considered a category of their own. They could be represented in a way similar to
other text media, or through a dedicated PDF Viewer which could harness the multi-
media aspects of pdf files.

● 1D, 2D or 3D datasets, which could be represented using a variety of charts / graphs
in the 3D scene, or as flat 2D plots.

● Other scientific formats, which are probably experienced best through dedicated,
file-specific viewers, such photometric IES data, 5-dimensional reflectance data
produced by gonio-photometers, or even X-Ray CT scans of structural elements.

● Raw datasets such as .csv or Excel files, which are best when represented as
structured sheets / tables.

The generic data type that would hold these auxiliary data should be one that can be
serialized to Speckle and attached to any Prism_Object.

○ 2.4 Core Foundation for Ontology

■ Overview

Now that all of the requirements are established, the following chapter will explore a series
of schematic prototypes for how the final object could be structured. The core aim and
questions raised regarding this set of proposals will be the previously discussed balance
between generic and explicit formulations. Essentially, finding the right degree of
interpolation between flexibility and predictability based on the reconfigurable paradigm of
Speckle. The core question is: how rigid should the underlying PrismArch ontology be to
achieve the required functionality, while still accommodating:

http://photometricviewer.com/
http://rgl.epfl.ch/software/Tekari
https://www.hindawi.com/journals/amse/2018/3019158/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 78

● Efficient exchanges
● Queryability
● Interdisciplinarity
● Freedom of users to add custom user data
● Bottom-up emergence of object models

In general software-design terms, we investigate here the right balance between Inheritance
and Composition for Prism-objects. In the coming chapters, three different concepts will be
proposed to examine the approach for how to enforce predictability on the objects. The
proposals range from explicit Inheritance structures, where most data is stored within
clearly defined properties of the objects, to objects whose description is composited purely
from arbitrary user data. All of these proposals are formulated as extensions of Speckle
objects and the study mainly focuses on how each approach works specifically in this
context, and not necessarily in a general sense. It is supported by a set of code examples
developed using the C# programming language and the Speckle.NET API -- see the [GitLab]
code library.

The three Options proposed are:

Option 1 - Rigid Data
Objects are explicit, and defined using an Inheritance-based approach.

Option 2 - Rigid Components
An approach mixing Inheritance and Composition.
Objects are composable and specific data structures are encoded into rigid modules, which
are appended to the objects user data.

Option 3 - Flexible Data
A purely Composition-based approach.
Objects rely mainly on the user specifying their own structures in order to tailor it to their
needs.

All three options will be laid out in a schematic sense and explained regarding the way they
would hold and enforce constraints on supplied data of various types - for example
metadata or structural engineering-specific properties.

Key:

Red PrismArch schema

Blue Speckle schema

Green Unstructured Data

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 79

■ 2.4.1 Option 1: Rigid Data

Figure 2.4.1a - Schematic diagram of Option 1 - an inheritance-based approach

Schematic Approach
The first approach uses a fairly conventional inheritance approach, where any new
PrismArch schema is created by inheriting from a Speckle base object (or other ‘higher level’
Speckle objects). This provides objects with a high degree of predictability, by enforcing
clear principles on how data should be structured through the object definition itself. This
makes it clear for all users what an object does and how it expects input data. Additional
user data can still be appended if necessary though, to complement the core functionality.
These objects should not be sealed, and a hierarchy of PrismArch objects can be defined -
similarly to how the IFC model is structured, where some generic layers are extended
through the use of new objects intended for specific disciplines or purposes.

Speckle Integration

The creation of this type of object means inheriting from a Speckle base class in one or more
levels, depending on the complexity of the objects. The example shows a generic PrismArch
object which extends the Speckle Base object to establish the baseline for the PrismArch
inheritance chain. This base object can be defined as the first extension of the Speckle
object, which can serve as a container for all the specific prism properties presented in
chapter 2.3.2 , which are shared across all objects.

Further, this base object will be extended with more specific objects which are needed in
the PrismArch environment, such as objects to handle engineering entities with, for
example analysis data, or MEP specific objects. Based on the type of the object the
PrismArch platform will be able to interpret it and handle accordingly.

Summary

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 80

Advantages:

● Explicit structure of Objects ensures data is always ordered correctly.
● Easy for any platform implementation to be programmed to handle the objects, due

to their explicit nature.
● By using inheritance to create frequently-needed PrismArch entities on top of the

Speckle base, this option is conforming to Speckle’s conceptual approach. Increases
likelihood of schemas conforming to future Speckle updates.

Disadvantages:

● Potentially too rigid, if numerous discipline-specific schemas are generated - as has
been seen in the IFC format. Must ensure that the minimal number of PrismArch
schemas are created.

● Creating a PrismArch-specific base object (or adjusting the existing Speckle base
object) to include the Prism_Signature and/ or Signature properties is not efficient,
as it would necessitate the creation or alteration of numerous inheritance chains for
existing ‘multi-level’ Speckle schemas (SpeckleBeam, SpeckleWall, etc). In this Option
there is no solution for how to achieve the Prism_Signature functions.

● Potential versioning issues when deserializing complex objects made with older
versions.

● Serialised objects could become larger - if PrismArch schemas inherit from multi-
level Speckle entities - as potentially null or unassigned fields would be stored. Can
be avoided by inheriting from the Speckle base object wherever possible.

■ 2.4.2 Option 2: Rigid Components

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 81

Figure 2.4.2a - Schematic diagram of Option 2 - rigid data structures as modules

Schematic Approach
The second approach is to enforce less structure through inherited objects, and instead
provide this same conformity using ‘orphan’ (i.e. non-inheriting) objects. In this scenario we
avoid the necessity to adjust every entity within large inheritance trees, and instead
PrismArch data is contained within explicit data objects which are passed into the Speckle
user data. Here, these objects are responsible for enforcing the correct format of their
supplied data.

Because these entities are stored within the expandable Speckle user data attached to an
object, it would be the responsibility of the PrismArch platform to search this unstructured
user data ‘container’, looking for relevant entities to display/ search/ query, and determine
how they should operate upon their parent object. In this scenario, entire object types can
be generated on-the-fly just by combining pre-existing components, without the need for
these objects to be defined at the software design stage. Importantly, the addition of one
type does not require the re-compilation of the library, it can be a runtime operation.

The creation of modules can be delegated to the parties to which they are relevant, and
modules that are irrelevant for any particular user can then be ignored, and redundant
explicit properties will not complicate the general object in contexts where they are not
present.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 82

Speckle Integration

For this option, existing Speckle objects would require minimal or no adjustment, and the
orphan PrismArch schemas would similarly be simple to generate.

How many user-data modules exist can emerge from the user base as the modification or
addition of more modules does not interfere with other modules already present, as they all
live separate from one another. A certain discipline can then develop them as they see fit,
using a relevant Speckle object as a common denominator.

Summary

Advantages:

● Serialised objects remain lightweight, as only existing data is included.
● Prism_Signature can be successfully stored in this Option. Must be attached to user

data, to avoid write-order issues with Speckle base object metadata.

Disadvantages:

● Potential versioning issues when deserializing complex objects made with older
versions.

● Frequently-needed PrismArch entities are attached as seemingly ‘optional’ or
unstructured user data to potentially empty (or unneeded) Speckle objects. Would
be cleaner and more in line with the Speckle ontological philosophy to make these
into standalone Speckle-inheriting classes.

● The creation of validation checks/ unit tests upon the PrismArch schemas is slightly
more complicated than Option 1, as their presence would need to be determined
within the flexible user data entity.

■ 2.4.3 Option 3: Flexible Data Structures

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 83

Figure 2.4.3a - Schematic diagram of Option 3 - an approach using custom data

Schematic Approach
The third Option represents a ‘minimal intervention’ approach which is completely flexible,
due to the fact that it implements a pure composition pattern. Here, no specific formats are
defined, but information is generated from sending sources based on ad-hoc defined user
data structures, which eventually consist of a series of known “blittable” basic types and/ or
arrays of them. This approach delegates all responsibility on how data is structured to each
user, giving them complete freedom over what is or isn’t transmitted. This, however, forces
the primary task of interpreting this data onto the consumer, as there is no way for the
PrismArch platform to predict or know exactly what type of data it will receive. The
PrismArch platform could be adapted to respond to this genericness and reduce user
interpretation, however this is presumed highly difficult.

Speckle Integration
The implementation of this approach is very straightforward, as the predefined Speckle
Object kits and user data functionality can be implemented ‘off-the-shelf’. PrismArch data is
simply appended to objects just like any other user data, with no need for PrismArch-
specific schemas. The platform would then be tasked with parsing and processing these data
structures from the Speckle objects. Speckle’s approach of developing custom kits with
custom structures and connectors could be used as it is as well, in case particular partners
or disciplines would like to customize their objects.

Summary

Advantages:

● Maintains complete Speckle flexibility.

● Serialised objects remain lightweight, as only existing data is included.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 84

● Very little development required, as no Wrapper functions or objects created to pass
PrismArch objects.

Disadvantages:

● No explicit format for prismArch data types, making it highly likely that unstructured
PrismArch data will be misinterpreted within the database/ VR environment/ etc.
This disadvantage alone is enough to render this Option unacceptable.

● No indication by the ontology of which data is useful or connected.
● No ability to create validation checks/ unit tests upon the PrismArch data, as not

contained within established schemas.

■ 2.4.4 Comparison and Selection

Comparison

 Figure 2.4.4a - From left to right, Options 1, 2 and 3.

Given the advantages and disadvantages listed in the previous chapter and the general
requirements established in Chapter 2.3, the following conclusions can be drawn for each of
the options:

● Option 1 is a highly promising approach - however it must ensure that minimal

hierarchy is applied to PrismArch schemas, to ensure it does not exhibit similar
inflexibility and proliferation of data types as exemplified by IFC. The precedent
study has demonstrated that this would be very problematic and would hinder
uptake of the PrismArch platform. The inability to incorporate mandatory
PrismSignature data is a problem.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 85

● Option 2 is a promising approach as it allows for both the ability for automated
computer-based data processing together with the ability for users to flexibly extend
and modify within some reasonable constraints. Critically, this option would
successfully accept PrismSignature information - i.e. PrismArch metadata.

● Option 3 is too unstructured to achieve the vital PrismArch functionalities previously
agreed upon. Although it would make development of external software connectors
extremely straightforward, it would also significantly increase the complexity of data
interpretation and application, and push all of these difficulties onto operations
occurring within the VR connector and environment. This in turn could potentially
undermine the platform’s real-time responsiveness. Lastly it would likely limit the
level of automation possible on the platform.

2.4.5 Selected Approach

From the summaries above, it is clear that a hybrid of Options 1 and 2 would be the ideal. This
new Option (4) is shown below:

Figure 2.4.5a - Schematic diagram of new Option 4 - the selected approach

In this new Option, all PrismArch entities (with one exception) inherit from Speckle entities.
The vast majority of them inherit from just the Speckle base object, thus ensuring they
conform to Speckle Transporter and DB requirements, but avoiding the need for substantial
rewrites to the constructors for multiple levels of inheritance chains.

The exception is of course the Prism_Signature entity, which will still exist as a clearly defined
class, but which can be most easily stored within the user data.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 86

Earlier studies considered expanding the Speckle base object with properties matching the
Signature. While this would have been a ‘conceptual pure’ solution, it would also have
necessitated the same types of significant and onerous rewrites to inherited classes,
connectors just described - these must be avoided.

■ 2.4.6 Specifications for Core PrismArch Schemas

Prism_Signature

The following is a minimum specification for the ‘Meta Data’ or DNA object, that must provide
authorship and attribution information for every asset produced:

Property Type Description

AssetId GUID
OR
string
OR
CheckSum

Unique GUID or HASH string for this asset.
Still TBD.

CreationDate DateTime

SphereLevel int 1 - 5.

PersistenceLevel enum Selected from a pre-existing PrismPersistenceLevel type.

CreatorName enum

CreatorRole enum Selected from a pre-existing PrismArchRole type.

CompanyName string Must be empty if user is within SL1.
Must be assigned for all other SLs.

Discipline enum Selected from a pre-existing PrismDiscipline type.
e.g. Architecture

Sub-Discipline enum Selected from a pre-existing PrismSubDiscipline type.
e.g. Facade Studies

Stage string Project Stage.

CreatedBySoftware enum Selected from a pre-existing PrismSoftware type.

CreatedFromFile string Text string of original file Path - thus includes original folder
location, original file name and file extension.

DeviceName string Automatically read from the device: PC, laptop, etc.

DeviceId string Automatically read from the device.

Prism_Tag

Property Type Description

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 87

Name string The Tag text, examples:

Status
“Draft”, “In Progress”, “For Review”

Flexible comments:
“Is this detail correct?”

Prism_TagConnection

Property Type Description

ObjectId GUID or Hash The unique identifier of the Asset this Tag is assigned to.

Refers to the Asset_Id property of the Asset’s
Prism_Signature.

TagId GUID or Hash The unique identifier of the Prism_Tag assigned.

Refers to the Asset_Id property of the Tag’s
Prism_Signature.

Status Enum i.e. Active, Superseded, etc.

Prism_Texture

The following is a minimum specification of a Texture object suitable for the scope of
PrismArch:

Property Type (C++) Size Description

Id GUID 16 B Unique identifier for the texture

Name string - Human-readable name of the texture

Width int 4 B Width of the texture in pixels

Height int 4 B Height of the texture in pixels

Channels uint8 1B The number of channels per pixel:
Can be 1,2,3 or 4 corresponding to R, RG, RGB, or RGBA

BitDepth uint8 1B The total number of Bits Per Pixel.
- For an 8-bit / chPannel RGB image the Bit Depth is 24.
- For a 32-bit / channel (HDR) RGB image, it is 96, etc

Ppm float 4 B Pixels Per Meter - the correlation of the texture to real-world
units of the surface it depicts.
A 2048 x 2048 image that represents a 1m x 1m wall would
have a Ppm = 2048.

Data uint8[] - The actual information of the texture, as a byte array

https://docs.microsoft.com/en-us/windows/win32/api/guiddef/ns-guiddef-guid
https://en.cppreference.com/w/cpp/string/basic_string
https://docs.microsoft.com/en-us/cpp/cpp/fundamental-types-cpp?view=msvc-160#integer-types
https://docs.microsoft.com/en-us/cpp/cpp/fundamental-types-cpp?view=msvc-160#integer-types
https://en.cppreference.com/w/cpp/types/integer
https://en.cppreference.com/w/cpp/types/integer
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.cppreference.com/w/cpp/types/integer

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 88

User Data map<string,
Prsim_Object>

- Dictionary of arbitrary data attached to the texture

Prism_UVMap

The following is a minimum specification of an object holding information about the UV
Mapping of a mesh:

Property Type Size Description

UV_Type uint8 1 B Whether this object contains UV coordinates or
makes use of one of the procedural Projection
Methods.

Texture Coordinates float[] - An array of floating point numbers in the form of [x1,
y1, x2, y2 … xN, yN] representing the per-vertex
texture coordinates associated with the object.

User Data map<string,
Prsim_Object>

- Dictionary of arbitrary data attached to the texture

Prism_InstanceDefinition

The following is a minimum specification of an object serving as an Instance Definition, an
object that does not exist in a 3D scene, but various Instances reference it:

Property Type Size Description

Definition Prism_Object - The actual object

User Data map<string,
Prsim_Object>

- Dictionary of arbitrary data attached to the Instance
Definition

Prism_Instance

The following is a minimum specification of an object serving as an Instance, an object that
references a Prism_InstanceDefinition:

Property Type Size Description

PrototypeId GUID 16 B The ID of the object that this
Instance refers to

Transformation Matrix4x4 64 B The transformation matrix of the
instance

User Data map<string, Prism_Object> - Dictionary of arbitrary data attached
to the Instance Definition

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 89

Prism_AuxiliaryData

Example class outlines:

// Example Generic Auxiliary Object
class Prism_AuxiliaryObject : Prism_Element
{
 byte[] raw_data ;

 virtual void Parse(Prism_Parser parser)
 {
 parser.Parse(this);
 }

 virtual void Render(Prism_Renderer renderer)
 {
 renderer.Render(this);
 }

 virtual void Handle(Prism_Handler handler)
 {
 handler.Handle(this);
 }
}

// Example Bitmap Parser
class Prism_BitmapParser: Prism_Parser
{
 virtual void Parse(Prism_AuxiliaryObject obj);
}

// Example Bitmap Renderer
class Prism_BitmapRenderer: Prism_Renderer
{
 virtual void Render(Prism_AuxiliaryObject obj);
}

// Example Bitmap Handler
class Prism_BitmapHandler: Prism_Handler
{
 virtual void Handle(Prism_AuxiliaryObject obj);
}

○ 2.5 Specifications for Discipline-Specific PrismArch Schemas

■ 2.5.2 Structural Engineering Schemas

Alongside the cross-disciplinary ontology described above, we must also provide discipline-
specific schemas for certain classes of object - for example objects to contain the results of
structural engineering analysis, that will not follow the generic PrismArch data types. The two
classes related to output results are intentionally loosely structured, and thus more readily
able to store results from a range of structural engineering software.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 90

Prism_StrEng_Results

The following is a minimum specification for a set of objects that can hold structural
engineering-specific input geometries and output results:

The objects described here are:

Classes

- Prism_StrEng_Results (the parent entity for the other objects)

- Prism_Base_Point3D

- Prism_StrEng_Line

- Prism_StrEng_Area

- Prism_StrEng_Results_Scalar

- Prism_StrEng_Results_Vector

Enumerators

- Prism_StrEng_Results_Types

- Prism_StrEng_Results_SubTypes

- Prism_StrEng_Results_OutputCaseTypes

The two classes related to output results are intentionally loosely structured, and thus more
readily able to store results from a range of structural engineering software.

Property Type Description

Joints Prism_Base_Point3D[] Array of all unique 3D Points within the structural
model - can be used for SupportPts, Nodes, Beam/
Column End Pt or Mesh Vertices.

Frames Prism_StrEng_Line[] Line elements that connect pairs of 3D Points.
Stored as Indices that refer to the Joint property.

Areas Prism_StrEng_Area[] Area elements that connect sets of 3 or 4 3D
Points. Stored as Indices that refer to the Joint
property.

Results_ByJoint_Scalar List<Prism_StrEng_Results_Scalar> Generic Scalar value storage.
For results per Structural Node.

Results_ByJoint_Vector List<Prism_StrEng_Results_Vector> Generic Vector value storage.
For results per Structural Node.

Results_ByFrame_Scalar List<Prism_StrEng_Results_Scalar> Generic Scalar value storage.
For results per Frame element.

Results_ByFrame_Vector List<Prism_StrEng_Results_Vector> Generic Vector value storage.
For results per Frame element.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 91

Results_ByArea_Scalar List<Prism_StrEng_Results_Scalar> Generic Scalar value storage.
For results per Area element.

Results_ByArea_Vector List<Prism_StrEng_Results_Vector> Generic Vector value storage.
For results per Area element.

Prism_StrEng_Line

Property Type Description

PtStart int Start Point. Stored as an Index that refers to the
Joint property.

PtEnd int End Point. Stored as an Index that refers to the
Joint property.

Prism_StrEng_Area

Property Type Description

A int Index of 1st Point in the MeshFace. Stored as an
Index that refers to the Joint property.

B int Index of 2nd Point in the MeshFace. Stored as an
Index that refers to the Joint property.

C int Index of 3rd Point in the MeshFace. Stored as an
Index that refers to the Joint property.

D int Index of 4th Point in the MeshFace. Stored as an
Index that refers to the Joint property.

IsTri bool Flag stating whether the MesFace is a Tri or Quad,
and thus whether the “D” index should be used.

Prism_StrEng_Results_Scalar

Property Type Description

ResultType Prism_StrEng_Results_Types Type of results - i.e. Displacement, Stresses, etc.

ResultSubType Prism_StrEng_Results_SubTypes Sub-Type of results - i.e. Translation, Rotation,
Max Stress, Min Stress, Utilisation, etc.

OutputCaseType Prism_StrEng_Results_OutputCaseTypes Load Case Type - i.e. Dead Load, Live Load, etc.

StepNum double Structural Mode for the given results.

Results double[] Flattened array of all results.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 92

Prism_StrEng_Results_Vector

Property Type Description

Same Properties as Prism_StrEng_Results_Vector, however Results property is different:

Results Prism_Base_Vector3D[] Flattened array of all results.

Prism_StrEng_Results_Types

Value Description

Unset

● Joint
○ Displacements
○ Reactions
○ Restraints

● Area Shells

○ Joint forces
○ Element forces
○ Element Stresses

● Frames

○ Joint Forces
○ Element Forces

 Prism_StrEng_Results_SubTypes

Value Description

Unset

Translation
Rotation

Base Reactions
Global FX
Global FY
Global FZ
Global MX
Global MY
Global MZ

Joint Reactions
F1
F2
F3
M1

Reaction Force in the X-direction
Reaction Force in the Y-direction
Reaction Force in the Z-direction
Reaction Moment in the X-direction
Reaction Moment in the Y-direction
Reaction Moment in the Z-direction

Reaction Force on the 1-axis
Reaction Force on the 2-axis
Reaction Force on the 3-axis
Moment Reaction around 1-axis

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 93

M2
M3

Joint Displacement
U1
U2
U3
R1
R2
R3

Joint Restraints
U1
U2
U3
R1
R2
R3

Area Shells - Element Stresses
S11Top
S22Top
S12Top
SMaxTop
SMinTop
SAngleTop
SVMTop
S11Bot
S22Bot
S12Bot
SMaxBot
SMinBot
SAngleBot
SVMBot
S13Avg
S23Avg
SMaxAvg
SAngleAvg

Area Shells - Element Forces
F11
F22
F12
FMax
FMin

Frames - Element Joint Forces
F1
F2
F3
M1
M2
M3

Frames - Element Forces

Moment Reaction around 2-axis
Moment Reaction around 3-axis

Displacement on the 1-axis
Displacement on the 2-axis
Displacement on the 3-axis
Rotation around the 1-axis
Rotation around the 2-axis
Rotation around the 3-axis

Restraint on the 1-axis
Restraint on the 2-axis
Restraint on the 3-axis
Rotation around the 1-axis
Rotation around the 2-axis
Rotation around the 3-axis

Stress in Top of Shell in 1-Direction
Stress in Top of Shell in 2-Direction
Stress in Top of Shell in 12-Direction
Max Stress in Top of Shell
Min Stress in Top of Shell

Stress in Bottom of Shell in 1-Direction
Stress in Bottom of Shell in 2-Direction
Stress in Bottom of Shell in 12-Direction
Max Stress in Bottom of Shell
Min Stress in Bottom of Shell

Internal Force along 1-axis
Internal Force along 2-axis
Internal Force normal to 1 or 2 axis
Max Force
Min Force

Force along 1-axis
Force along 2-axis
Force along 3-axis
Moment around 1-axis
Moment around 2-axis
Moment around 3-axis

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 94

P
V2
V3
T
M2
M3

Frames - Element Stresses
S11
S12
S13
SMax
SMin

Axial Load
Shear along 2-axis
Shear along 3-axis
Torsion
Moment around 2-axis
Moment around 3-axis

Stress on the face in the 1-axis direction
Stress on the face in the 1 and 2axis direction
Stress on the face in the 1 and 3axis direction
Max Stress
Min Stress

Prism_StrEng_Results_OutputCaseTypes

Value Description

Unset
Dead
MODAL
LL
SIDL
SW
ULS
SLS

Dead Load Case
Modal Case
Live Load Case
Super Dead Load Case
Self Weight Case
Ultimate Limit State
Serviceability Limit State

■ 2.5.3 MEP Engineering Schemas

 The MEP Engineering Schemas need to be based on hierarchical ontology and driven
by the classification systems. Uniclass and Omniclass classification systems provide tables
which can drive the schemas.

 Omniclass contains 15 tables, some of them focusing on buildings while others focus
on landscapes or civil and process engineering. The tables can be used independently and
focus on a particular area of a construction project.

 The Omniclass tables can be downloaded by clicking this link

https://www.csiresources.org/standards/omniclass/standards-omniclass-about

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 95

Screenshot of Omniclass Table 21 (partial information).

Source: https://www.csiresources.org/standards/omniclass/standards-omniclass-about

 Uniclass is a classification system initially developed for the UK market, however due
to evolution in data management the system is now aligned with ISO19650 aiding in several
aspects from CAD layering to costs, annotation etc. The Uniclass system contains 12 tables
which can be downloaded by clicking this link

Screenshot of Uniclass Product Table (partial information)

Source: https://www.thenbs.com/our-tools/uniclass-2015

https://www.thenbs.com/our-tools/uniclass-2015

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 96

○ 2.6 Non-Ontological Requirements for PrismArch

■ 2.6.1 Security and Authentication

As outlined in several of the previous Deliverables, there is a critical requirement for the
PrismArch platform to ensure the security and privacy of all data shared between parties.
These issues are clearly demonstrated in D1.1 Section 4.2 (Data Authority / Ownership of
Data), D3.1 Section 3.2 (Data and Document Management).

As described in D4.1 Section 3.2.1 (Speckle system and developments towards integration),
and below, the existing Speckle framework contains most of the requirements needed for
PrismArch. It is a highly secure data distribution platform, the developer state that:

“Enterprise Speckle Servers (as well as our hosted offering, speckle.xyz) are deployed with end-to-end
security:

● The Speckle Server uses https (TLS) to encrypt all incoming data from all clients.
● All data is stored in a managed PostgreSQL database cluster.
● The DB is only accessible from the Kubernetes cluster that runs your server and its other

components.
● DB credentials are securely stored in a Kubernetes secret.
● SSL is always used to communicate with the DB.
● Data in the DB is encrypted at rest with LUKS.
● The DB will have a standby failover node, & PITR (point in time recovery).”

From https://speckle.systems/security/

The same online document also confirms that Speckle complies with the EU’s GDPR policy.
See https://speckle.systems/privacy/ for additional information.

The security arrangements above are for Speckle’s Enterprise solution - however it confirms
that their platform can achieve the level of data security necessary for PrismArch, and the
above should be treated as our standard requirement for PrismArch.

Data Visibility and Confidentiality

However, while Speckle generates highly secure data connections, it does not provide the
functionality necessary to isolate incoming data from different parties, or provide granular
permission levels that control which users can see or operate upon different data sets.
Speckle currently only provides differentiation between Reviewer, Contributor and Owner.

https://speckle.systems/security/
https://speckle.systems/privacy/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 97

Figure 2.6.1a - Current Speckle Permission Levels.

As specified in D1.1 Section 4.2 (B - Constraints) a pivotal requirement is that the PrismArch
platform knows exactly which organisation each user belongs to, as well as what Sphere Level
they are currently operating within, in order to ensure that they can only share (or have
shared with them) data appropriate to their Role, Organisation, Sphere Level, and so on.

To provide this functionality we therefore need to look beyond the ‘default’ implementation
of Speckle.

Options for Database Integration

With the above issues in mind, there are a range of database integration options that span
between highly aggregated and highly distributed solutions. Note that the term distributed
does not equate to ‘siloed’, as is usually the case in AEC.

Figure 2.6.1b - Options for Speckle Database deployment. The numbers shown (1-4) refer to the Sphering Level
information contained within.

We believe that all of these options (described in detail below) are technically feasible, by
adapting the existing Speckle Server architecture. However we also believe that the earlier
options would be very complex to achieve, with increasingly simplicity for latter options.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 98

Additionally we believe the system is increasingly secure from failures for latter options. Most
significantly, we think that only the final Option (4) fully achieves the permission levels and
access control requirements requested in prior PrismArch reports.

Option 1 - Highly Aggregated

Figure 2.6.1c - Option 1 for Speckle deployment.

This solution is the default Speckle approach.

In this option, all data (SL1-SL4) is stored in a single Repository. This Repo could be a local
Server within an AEC Partner’s office, or a Cloud-based Server (AWS, Google Cloud, Azure,
etc).

This has the advantage of no duplication of data, which in turn ensures no issues with data
synchronisation.

However there is significant risk of data loss, due to no duplication of data (i.e. single point
of failure) for SL1-SL4. This could be somewhat mitigated if the Server is cloud-based and
includes backups.

There is unacceptable functionality with regards to Permission Levels: All users can access all
the data of others (from SL1-SL4). AEC Partners would be rightly wary of unpermitted data
extraction.

A minor issue is that even personal SL1 data is stored in the same Repo, thus being
unnecessarily costly for whoever pays for this Server - the client, the architect, etc.

Option 2 - Minor Distributed

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 99

Figure 2.6.1d - Option 2 for Speckle deployment.

In this Option, most data (SL2-SL4) is stored in a single Repository. This Repo could be a local
Server within an AEC Partner’s office, or a Cloud-based Server (AWS, Google Cloud, Azure,
etc).

This has the advantage of reduced duplication of data, which in turn ensures less issues with
data synchronisation.

However there is significant risk of data loss, due to no duplication of data (i.e. single point
of failure) for SL2-SL4. This could be somewhat mitigated if the Server is cloud-based and
includes backups.

There is unacceptable functionality with regards to Permission Levels: All users can access all
the data of others from Company-level upwards (from SL2-SL4).

In this scenario SL1 data is now stored in personal Repos (again, could be client-based, local
Server, or Cloud Server), which avoids unnecessary cost for the client, the architect, etc.

This level of distribution is arguably the minimum required, and already necessitates two
different data transport systems to be set up.

Option 3 - Major Distributed

Figure 2.6.1e -Option 3 for Speckle deployment.

In this Option, minimal data (SL3-SL4) is stored in a single Repository. This Repo could be a
local Server within an AEC Partners office, or a Cloud-based Server (AWS, Google Cloud,
Azure, etc).

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 100

There is some advantage of reduced duplication of data, which ensures slightly less issues
with data synchronisation, but only for SL3-SL4.

There is a reduced risk of data loss, due to no duplication of data (i.e. single point of failure)
for SL3-SL4. This could be somewhat mitigated if the Server is cloud-based and includes
backups.

Even with this arrangement, there is still an unacceptable functionality with regards to
Permission Levels: All users can access all SL3 and SL4 data of others - i.e. Clients can access
work distributed between Companies (but supposedly not shared with them yet) within SL3,
and all Companies can access all SL3 data, regardless of whether it was shared with them.

In this scenario SL1 data is now stored in personal Repos (again, could be client-based, local
Server, or Cloud Server), while SL2 data is stored in company Repos (again, could be local
Server, or Cloud Server). This change slightly Increases the risk of data loss, but would be
localised to specific companies.

This level of distribution necessitates three different data distribution systems to be set up.

Option 4 - Fully Distributed

Figure 2.6.1f - Option 4 for Speckle deployment.

In this Option, no data is stored in a single Repository. In general, it is comparable to a git-
style distribution of private branches in private instances (streams/forks), with only the
more public branches being pushed to more public instances of the database.

This has the slight disadvantage of duplicating the same shared data across multiple
locations.

There is now a greatly reduced risk of data loss, as all partners now have an identical copy of
the SL3 and SL4 Repos. Most critically, this is likely the only option which can guarantee that
no party can access information they are not permitted to see.

SL1 data is stored in personal Repos (could be client-based, local Server, or Cloud Server).

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 101

SL2 data is stored in company Repos (could be local Server, or Cloud Server).

Synchronised copies of SL3 and SL4 data are stored in Company Repos. (could be local
Server, or Cloud Server).

This level of distribution still only necessitates three different data distribution systems to be
set up.

Unique Aspects of Option 4

Due to the fully distributed nature of SL3 and SL4, all AEC Partners must formally agree -
before a project begins - what level of security is acceptable for all synchronised Repos.

For example:

● ZHA stores SL3 data in 2-Factor Authenticated cloud server.
○ ✓acceptable to all parties.

● AKT stores the same data in an open internet database.
○ ✘ unacceptable to some parties.

Because SL3 and SL4 are duplicated, we must ensure that all AEC Partners can only possess
synchronised copies of these Repos. An ideal way to do so would be to wrap the functions
for pushing to different Sphere Levels inside a parent function, that ensures the commit is
distributed to all of the relevant databases simultaneously.

Summary of Options, and Potential Implementation Solution

Our analysis of the potential options has determined that only option (4) achieves all of
the significant PrismArch Database requirements. This is because ‘default’ Speckle
databases only have a limited set of permission options: once a user has joined a
Speckle project they can see all data, and the permission levels just control what they
can edit or delete.

That is not sufficient for PrismArch. We need the ability to entirely exclude certain
users/ groups from seeing or even knowing about the existence of certain data, as
specified in the Sphering Levels discussions throughout D6.1 and D1.1. There may be
the potential to greatly expand the permission system for Speckle, that could in turn
potentially remove some of the impediments from utilising a more shared data source
(such as options (1) or (2)). However, there would still be questions about which party
holds the admin level controls for that shared database (and thus can access all data,
regardless of permission levels). Given how strongly the AEC Partners have suggested
that data access and sovereignty is an issue, and given the current level of
understanding of the Speckle systems, we felt that option (4) is the best compromise at
this juncture.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 102

Conveniently for this project, we believe that it is possible to customise the ‘default’
Speckle platform to generate a bespoke arrangement very akin to the option (4) shown
above. Speckle employs entities called Transports, that define how it writes to and from
mediums. As stated below, it is possible to set up multiple Transports in parallel that
could write to a range of different Servers (for example, Servers housing SL2, SL3 and
SL4) simultaneously.

According to their own documentation:

“Transports: Different storage systems have various characteristics that make them better
(or more ill) suited for different scenarios. This is why, rather than employ a unique storage
system, Speckle uses an intermediary abstraction layer: transports. A transport defines the
way Speckle writes to, and reads from, a given persistence layer.

One such transport is the Speckle Server Transport. Another transport is an SQLite Transport.
Speckle comes with a couple of other transports too: a MongoDB transport, an In-Memory
Transport, as well as a Disk Transport. Other transports, such as an S3 transport, a MySQL
transport could easily be developed.

Moreover, send operations are no longer restricted to one single location: Speckle allows you
to send data, in parallel, to multiple transports. For example, data can be sent to two
different Server Transports at the same time, one being an internal server and one being an
external one - a different stakeholder involved in the process.”

From https://speckle.guide/dev/architecture.html

Further documentation on this subject is available in the “Writing Your Own Transports”
section of https://speckle.guide/dev/transports-dev.html.

Example of Multiple Synchronised Speckle Transports

Figure 2.6.1g -Conceptual process for utilising multiple transports.

https://speckle.guide/dev/architecture.html
https://speckle.guide/dev/transports-dev.html

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 103

PrismArch should therefore implement multiple Transports - not just 1x Transport per SL,
but instead 1x Transport per Company per SL - that are written to simultaneously. To avoid
the risk of not pushing to all relevant SL Servers, all of these different Transports must not
be exposed to PrismArch users. Instead, groups of these Transports should be wrapped
within custom PrismArch Speckle Connectors, that use a combination of the User, Company,
and SL meta-data to determine which Transports should be activated in any given commit.

For example:

● An SL1 object committed by Helmut (ZHA) up to SL2 creates 1x Transports:
○ ZHA SL2 Repo

● An SL2 object committed by ZHA up to SL3 creates 3x Transports:

○ ZHA SL3 Repo
○ AKT SL3 Repo
○ SWECO SL3 Repo

● An SL3 object committed by AKT up to SL4 creates 4x Transports:

○ ZHA SL4 Repo
○ AKT SL4 Repo
○ SWECO SL4 Repo
○ Client’s SL4 Repo

There must be no functionality exposed that allows commits to pass to a single company’s
SL3 or SL4 Repo, as this would break synchronisation between all the distributed Speckle
servers.

Transports, Commits and Validation
Given that the PrismArch ontology that we are proposing attaches the critical
Prism_Signature to the Speckle ‘optional’ user data, it could be sensible to include a
validation function within all commits or transport functions, which would ensure that a
Signature is attached to all entities before sending them.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 104

● 3.0 CONCEPTUALISING THE VR EXPERIENCE

○ 3.1 Introduction

The PrismArch platform will differentiate itself from existing VR collaborative softwares in

the way it investigates the commonality and symbiosis between different building design

practices. Drawing from the particular characteristics of building design, virtual reality

provides value through not only the three-dimensional aspects of user interaction but also

the confluence of intricate project information in one virtual space.

The research in this section provides both a general understanding of how the AEC VR

experience could be conceptualised from literature reviews and user interviews, followed by

domain specific requirements developed through case studies and design exercises.

○ 3.2 VR Experience Requirements Outlined in Previous Deliverables

Before this point, there has been a tremendous amount of discussion on the prototype

requirements and data classifications of the PrismArch platform. The complexity of creating

a working prototype is evident not only in the multidisciplinary nature of the project scope

but also in the multitude of stakeholders involved at each stage of the building design

lifecycle.

Previous deliverables have outlined sixteen base-level user requirements (D1.1, sct. 4.4) that

respond to design needs emerging from the convergence of AEC disciplines. These

requirements collectively offer a solid framework for the more general features required

during a range of AEC activities. The PrismArch consortium has also identified four distinct

data classifications (D6.1, sct. 1.1), where a clear definition was given to the Personalisable

User Interface (PUI). This section of the work assumes the PUI to be a configurable interface

that can be brought across different spheres to facilitate activities undertaken during

individual design work and reviews, as well as design team meetings. Many of the

functionalities proposed henceforth will fall under sub-section d. ‘Toolkit’ category.

Translating Requirements into Software Features

At the current stage of research, it is paramount to recognise that many of the collected

requirements have to be translated into software features ahead of development. This is no

small feat, as was demonstrated by the strenuous efforts in both D1.1 and D6.1. For an

innovation project such as PrismArch, where development happens mainly in uncharted

waters, we need to acknowledge that the development activities are often less structured

and harder to anticipate. However, setting out instructions as clearly as possible will still

increase development efficiency and improve quality assurance further down the line.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 105

Figure 3.2a - Design Council’s framework for innovation

A constructive guideline for innovation is the Double Diamond launched by [Design Council],

a much-referenced design methodology in the industry. The diagram captures an iterative

quality of the design process and the divergent and convergent flow of exploration. The

methods documented in this section fall roughly within the ‘Define’ phase. They are set out

to accurately generate the problem definition, significantly scoping down the focus from

previous deliverables. Some of these include discipline-specific user interviews, user story

mapping, card sorting, etc. More details will be provided in later parts of this section.

○ 3.3 User Experience in the 3D Environment

■ 3.3.1 Considerations for User Interaction Design

Despite the slow adoption of immersive technology, the AEC industry is in fact a prime

candidate for innovation in 3D interaction design. As shown by [Zaker 2018], the recent

integration of BIM in construction projects indicates a collaborative use of semantically rich

3D models for design tasks. This transition could be the starting point of a paradigm shift

where the traditional screen-based interactions no longer suffice user needs.

When designing for user interaction in the 3D environment, two topics deserve more

attention in the current research context: interaction fidelity and interaction precision.

[Bowman 2014] eloquently describes the contemporary design trends in both of these

domains.

The ongoing debate for interaction fidelity falls between results that are ‘realistic’ vs. those

that are ‘magical’. [Bowman 2012] defines interaction fidelity as ‘the objective degree with

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 106

which the actions (characterized by movements, forces, body parts in use, etc.) used for a

task in the UI correspond to the actions used for that task in the real world’. One might

argue that realistic interactions require a shorter learning curve, as long as their affordance

is explicit in the user interface. On the other hand, the trade-off is missed opportunities to

attempt ‘enhanced’ interactions that might achieve better efficiency. This decision will

fundamentally fall upon the interaction designers, depending on the user’s individual tasks.

Hardware limitations of the spatial tracking system have restricted the level of interaction

precision virtual reality could attain. This will prove challenging for the AEC disciplines,

especially if design reviews rely on users carrying out tasks such as measurements and

alterations on the fly. Recommendations by [Bowman 2014] such as the ‘progressive

refinement’ method deserve some lengthy examinations to reach optimal precision.

In addition to the above discussion, [Bowman 2001] accumulated a well-researched list of

options for universal 3D interaction tasks that will provide concrete points of reference

during the prototype stage:

● Navigation

○ Travel: motor component of viewpoint motion

- Gaze-directed steering

- Pointing

- Map-based travel

- “Grabbing the air”

○ Wayfinding: cognitive component; decision-making

● Selection: picking object(s) from a set

- Simple virtual hand

- Ray-casting

- Sticky finger (occlusion)

- Go-go (arm-extension)

● Manipulation: modifying object properties (esp. position/orientation)

- Simple virtual hand

- HOMER (Hand-Centered Object Manipulation Extending Ray-Casting)

- Scaled-world grab

- World-in-miniature

● System Control: changing system state or mode

- Virtual menus

- Tool selectors (belts, palettes, chests)

- Speech commands

- Pen & tablet technique

Case Study: Gravity Sketch

An effective example for universal 3D interaction techniques is [Gravity Sketch], a virtual

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 107

reality powered 3D design platform funded by the Horizon 2020 programme. Upon testing

the latest application on the Oculus Rift headset, we discovered a few instances that clearly

encapsulated the benefits of interacting in a 3D environment.

Figure 3.3.1a - The Orthographic Viewport

Figure 3.3.1b - The 3D Colour Picker

Figure 3.3.1c - Weighted selection for a SubD object

Figure 3.3.1d - Pointing at a docked menu panel

The toolkit comes with an ‘Orthographic Viewport’ that shows all the model side views

projected onto a miniature box. The user can hold up the viewport like a solid object and

closely inspect the views by moving it closer to their face. It also provides a 3D ‘Colour

Picker’ which is cylindrical shaped, with a colour wheel on the top representing the hue and

its height representing the value of a chosen colour. Furthermore, the toolkit incorporates

weighted selection for a SubD object so that the user could grab onto a surface and sculpt it

by hand. Some other effective 3D interactions include being able to point precisely with a

finger-like stick and the ability to dock menu panels in mid-air. All of these are incredibly

intuitive gestures created for a 3D workspace. They enhance what can be achieved

traditionally through screen-based interactions.

■ 3.3.2 Considerations for a Dynamic Interface Design

Given the open-endedness of the proposed platform, it is fair to assume that at any given

point there’s a chance that a user will encounter some purely novel elements that they have

never interacted with before. This open-endedness is reflected in the underlying data-

structures, as discussed in Section 2.4. If the PrismArch VR world can contain complex,

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 108

‘exotic’ elements that are not specified at the platform’s design stage, but are generated by

the users, what is the appropriate type of UI that can accommodate such extreme

ontological variability ?

To answer this question, we cannot help but consider an alternative UI paradigm that shifts

away from fixed toolbox-like or palette-like examples like Gravity Sketch, and is more similar

in nature to modular, node-based tools like Scratch or Grasshopper3D, where the

composition of simple elements leads to novel, ad-hoc complex behaviours.

One could theorise a very high-level example of this concept in the ability to install and

uninstall toolsets according to their discipline-specific preferences, as part of a plug-in

system. Such a system, as useful and necessary as it may be, does not constitute an example

of a modular and dynamic UI system, since all it enables is the addition and removal of fixed

UI elements/functionalities, but not the synthesis of new ones.

Closing in on a more granular level, however, one can start breaking down and abstracting

away existing UI features into very simple atomic operations, that can then be recombined

by the user in novel and creative ways. These “UI atoms” could have a physical, tangible 3D

appearance in a VR context, allowing the user to treat them as functional building blocks,

gradually constructing an inventory of bespoke UI inventions, for complex element filtering,

geometry generation, navigation, querying, visualization, etc.

These assembled UI “molecules” could be short-lived for very project-specific operations, or

end up becoming versatile, industry-standard “swiss-army knives”, through their continuous

tweaking and combination with tools of other users. The Prism project could finally decide

to formalize and optimize some of these user tools based on their popularity and

usefulness.

Reflecting upon the ontology and schemas described in previous sections, we could start

seeing some synergies between such an interface and the data structure (sct 2.4.7, sct 2.5).

Each object from the ontology could be represented in the interface with a series of nested

properties, and being able to connect functions to these objects according to their

properties would contribute to the dynamic quality of the interface.

Case Study: Scratch

Scratch is a visual programming language originally developed in MIT that is used by millions

of children and adults worldwide. It uses a block-based UI paradigm, with users “clicking”

blocks together like lego bricks. Different types of blocks allow for boolean logic, conditional

statements, loops, sensor inputs, event triggering, geometry drawing and multimedia

playback, among others.

The compact nature of each block synthesis allows users to conceptualize their logic as

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 109

tangible contraptions, which can be mashed together or deconstructed with ease. What is

of particular interest is that there’s no way a block synthesis can become non-executable.

What can slot into what is handled by the UI (shape system) and quite simply, one cannot

produce invalid or erroneous “code”, only malfunctioning at the worst case scenario.

Figure 3.3.2a - An example of a loop containing a conditional statement in Scratch.

Case Study: Grasshopper 3D

[Grasshopper 3D] is a graphical algorithm editor - part of the Rhinoceros CAD modelling

software - that enables designers to generate 3D geometries or perform complex data

operations through a node-based interface. The user interacts with the interface by

dragging components onto a digital ‘canvas’, where inputs and outputs are connected

dynamically via wires to produce the final results.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 110

Figure 3.3.2b - Grasshopper node-based visual programming interface.

Figure 3.3.2c - Grouping and clustering nodes with the Grasshopper UI

The modularity of Grasshopper is exemplified not only in its excellent plug-in system that

developers can author programmatically, but more importantly in the ability to cluster

networks of nodes and nest them inside singular nodes or ‘Clusters’ in Grasshopper

terminology. These clusters are the equivalent of Functions/ Methods in traditional

programming languages: re-usable, containerized pieces of logic with clear inputs and

outputs. Clusters themselves can become parts of larger projects, or be embedded into

more complex, higher-level clusters. A user can maintain an easily accessible library of user-

objects/ clusters and share them with peers or re-use them in other projects.

Although we certainly don’t propose a direct translation of a 2D UI paradigm like

Grasshopper or Scratch into our VR platform, we trust that there are valuable lessons to be

learnt from such tools in terms of designing a UI system able to handle a great degree of

ontological uncertainty, while providing users the ability to navigate, analyze and author this

world in their own preferred, discipline-specific ways.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 111

○ 3.4 Core Requirements for the VR Interface

3.4.1 The PrismArch Four Root Classes

The earlier deliverable D6.1 outlines the four fundamental classes in the PrismArch VR
platform, User Interface (UI) being one of them. The submitted report clearly highlights the
requirement of visually distinguishing each class inside the singular VR space. Building on
the previously-submitted material, this section studies core requirements for the PrismArch
VR User Interface, proposing its structure as well as the control/interaction methods for
both individual and collective scenarios.

The four fundamental classes in the PrismArch VR platform are:

(1) Immersed Humans (IH)
(2) User Interface (UI)
(3) PrismArch Design Objects (PADO)
(4) PrismArch Metadata (PAM)

Figure 3.4.1a - The Four Root Classes of PrismArch Platform Content

(1) Immersed Human

In the deliverable D6.1, an Immersed Human is described as a ‘digital representation

of an immersed individual who is on-boarded to work inside the PrismArch World

(PAW)’ (D6.1, p.14).

Requirements: Every on-boarding member should be allowed to configure their

personal avatar, which resides inside their Personal Work Sphere (PWS). Inside the

PWS, the user can complete the avatar configuration and customisation for the VR

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 112

environment with the help of a virtual mirror to increase cognitive self awareness

(Figure 3.4.1b). Inside VR, the user's main view is a first person view, mostly seeing

their hands and arms when immersed. In order to configure the avatar, the user

needs to recognize him/herself, and having a mirror inside VR is helpful for the

purpose.

By using full size human figures, we enable an accurate representation of scale. It is

important to humanise the avatars, to uphold the ethos of human-to-human

interaction (as opposed to perceiving our collaborators as monsters or robots).

Adding facial characteristics and facial expressions also minimises the need for name

tags and other forms of identifiers (Figure 3.4.1c and Figure 3.4.1d).

While we think it is important to have a full-body tracking photorealistic avatar, we

are aware of the current limitations in precision of the motion tracking and

restrictions in VR performance. The default PrismArch avatar can therefore be

simplified to develop a proof of concept, with lower resolution of human body

geometries and head and motion controller tracking at a minimum. PrismArch

default avatars would also need to include the user’s company logo, user’s name and

user’s project role (e.g Company Directors, Admins, Management, Designers,

Engineers) and these can be colour coded in a discipline registered company colour.

The user will need to set the correct eye height and tracking environment for the

best immersive experience (see NVIDIA Holodeck example, Figure 3.4.1e). The

calibration optimization UI is required as part of the PrismArch on-boarding process.

Navigation sensitivities and field of view should be adjustable across the platform,

and also require the relevant UI.

Note: Each IH is always created inside the dedicated Personal Work Sphere (PWS),

which is contained within a discipline-specific Collective Work Sphere (CWS).

Figure 3.4.1b - Avatar Configuration inside PrismArch Personal Work Sphere

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 113

Figure 3.4.1c - Examples of the User Interface to configure avatar height, the existing plugin MetaHuman

inside Unreal Engine 4

Figure 3.4.1d - Examples of the User Interface to configure avatar LOD, the existing plugin MetaHuman inside

Unreal Engine 4

Figure 3.4.1e - Example of the existing application to calibrate an avatar inside VR, Holodeck User Guide

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 114

(2) User Interface

Below are three basic User Interface types that can be accessed inside the PrismArch

VR platform:

- Personalisable and Customisable User Interface

(with sub-widgets and shortcuts)

- Billboard User Interface

- Query User Interface (with Metadata Nodes)

Personalisable and Customisable User Interface

The Personalisable and Customisable User Interface is attached to the Personal Work

Sphere (PWS). 'Personalisable' is defined as a system tailored platform content for

individual users, while ‘customisable’ is defined as the content being arranged by

the user (D6.1, sct.1.1).

Requirements: The User Interface should be able to be minimised and maximised

according to different usage scenarios. Whenever the user interacts with different

PrismArch class types, views and modifies content with different user scales, or

seeks to avoid occlusion issues, the UI can be adapted to increase work efficiencies

(Figure 3.4.1f). The UI size and user display distance can be adjusted according to the

ergonomic information registered for that specific user.

Figure 3.4.1f - PrismArch User Interface types and Interaction modes

Top (from left): the user avatar hand interacting with small UI, medium UI or large UI

Bottom: the user avatar laser/ray interacting with the medium UI

The Personalisable and Customisable User Interface will need to contain the

following tools and functionalities (D6.1, sct. 1.1):

● Task bar widget

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 115

● Dashboard widget

● Preferences widget

● PrismArch Functionalities and Proprietary Functionalities

(e.g. Administration Tool, Commenting and Markup Tool, Clipping Plane Tool,

Toggle Camera Tool, Toggle View Mode Tool, Specialist and Proprietary Tools)

The user interacts with these widgets with the avatar hand. Both Personalisable and

Customisable User Interface can be scaled based on the user’s preference. In the condition

that the UI is enlarged, the distance between the user and the UI should be adjusted

automatically considering the user control-display ratio. The user interaction mode can

switch to a ray mode to interact with the widgets if the UI is located outside of the user’s

reaching region. The switch, however, must be intuitive and the transformation should be

smooth enough to avoid user distraction.

“At a higher level of platform operation, the platform offers system embedded and

persistent functionalities. These PrismArch CORE functionalities enable all the IHs to co-exist

and work collaboratively inside the PrismArch World (PAW)”. (D6.1, sct.1.1)

The functionalities listed and requested in D1.1 and D5.1 also require interfaces to

enable/disable/execute the content. For frequently accessed functionalities, it would be

helpful to have shortcut icons, similar to the examples in Figure 3.4.1g.

Figure 3.4.1g - the next generation of XR cabin experiences in autonomous cars, UltraLeap

PrismArch Core Functionalities

● Administration functionality

● Commenting and Markup functionality

● Clipping Plane functionality

● Toggle Camera functionality

● Toggle View Mode functionality

Specialist and Proprietary Tools

● Mindesk (as Rhino, Grasshopper and Revit connectors)

● Zoom, Skype and/or alternative Steam or other Voice Chat

functionalities

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 116

● Outlook Email

● Specialist tool _ architect

● Specialist tool _ structural engineer

● Specialist tool _ MEP engineer

Please visit D5.1 and D6.1, sct 1.1 for the full list of functionalities.

Billboard User Interface

The Personalisalbe and Customisable User Interface outlined above is connected to the

Personal Work Sphere. In addition to this user specific UI elements, the PrismArch VR

platform requires project specific information display, or Billboard type UI, loaded into a

‘world’1 inside the PrismArch Project Sphere. The Billboard User Interface has a range of

applications. For example, it could be a display to visualize a specific or queried project

information, and/or it could function as a shortcut to another UI. Note that any interacted

content should reflect the registered discipline colours when the content is hovered,

highlighted or selected (Figure 3.4.1h).

Figure 3.4.1h - Interacted UI colour reflecting to the user registered discipline specific colour code

Left: the user interacts with a Billboard UI with the hand and highlighted in a discipline specific colour

Right: the user interacts with a ray attached to the hand and highlighted in a discipline specific colour

Example of colour codes for each discipline are suggested as follows:

● Guest/ Default: White or a random colour from a list, #ffffff, (255,255, 255)

● Arch: Orange, #ff6600, (255,100, 0)

● Struct: Green, #00ff00, (0,255, 0)

● MEP: Blue, #00ffff, (0,255, 255)

Figure 3.4.1i - Examples of PrismArch discipline specific colour codes

1[Unreal Engine] Unreal Engine Documentation, "Unreal Engine 4 Terminology",

URL:https://docs.unrealengine.com/4.26/en-US/Basics/UnrealEngineTerminology/

https://docs.unrealengine.com/4.26/en-US/Basics/UnrealEngineTerminology/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 117

Figure 3.4.1j - the Immersed Human and the PrismArch Billboard User Interface

The Billboard User Interface can also be attached to visualized Metadata. PrismArch
Metadata can be compared to 3D and immersive folder structure. Metadata nodes, which
are explained later in this section, are representations of diverse content (formats) and the
structure enables the users to view and interact with large volume and complex information
in an organised manner and to describe project information from a holistic point of view.
The Billboard User Interface can solely exist to project text and thumbnail information
and/or to interact to load another UI (Figure 3.4.1i).

Please visit 3.6.1.a User Interface Design for On-boarding to see the full storyboard.

 Query Interface (with Metadata Nodes)

Please visit 3.6.1.d User Interface Design for Content Query and Demarcation for more info.

In summary, it is recommended to have at least three basic types of User Interface Designs

inside the PrismArch VR platform; Personaliable and Customisable UI, Billboard UI and

Query UI. These User Interfaces can be anchored to either the Personal Work SPhere or

PADO. We would like to highlight that the user experience must be consistent regardless of

what type of User Interface the user is interacting with.

(3) PrismArch Design Objects (PADO)

A PrismArch Design Objects (PADO) is defined as a project-related object produced

inside the PrismArch World by the on-boarded users (D6.1, sct.1.1). PADO is a

project specific item with a tag containing information about the author, their

organisation and discipline.

Requirements: A user should be able to scan PADO information and read the tag

content by highlighting the object. The information will need to pop up at a suitable

location based on the distance between the user and interaction target. This may be

near the hand of the avatar, in front of the user camera (HUD), within the user’s

Personalised UI, or by the metadata node depending on the control distance ratio.

For a more detailed explanation and design proposal please visit 3.6.1.b User

Interface Design for Personal Work Sphere

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 118

Figure 3.4.1k - the Immersed Human interacting with a PrismArch Design Objects (PADO) using a

transformable user interaction tool - ray mode

(4) PrismArch Metadata

PrismArch Metadata (PAM) is defined as a set of project information and data that is

referenceable to other sets of project information and data (D6.1, sct.1.1). Metadata

is created by authorised users or through PrismArch automated functions. It is

located inside the PrismArch Singular Database (PASD).

Requirements: Metadata can contain reference information or information

associated with PADO. The associated PADO metadata can be visualised as a

simplified geometry in order for the Immersed Humans to access and examine the

data inside VR (Figure 3.4.1l). The users should be able to query and preview the

metadata information inside VR (if they have access privileges) by highlighting a

node or multiple nodes. The search results should then be displayed to the user for

further manipulation and examination. For further study about user interaction with

the Metadata Nodes, please visit 3.6.1.d User Interface Design for Content Query and

Demarcation.

Figure 3.4.1l - the Immersed Human interacting with a Design Object and Metadata Nodes

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 119

○ 3.5 Discipline-Specific Requirements for the VR Interface

■ 3.5.1 Architecture

Figure 3.5.1a (left) - Meeting Sphere for an internal discipline specific or cross disciplinary project review with

curated PrismArch Design Objects (PADO)

Figure 3.5.1b (right) - Meeting Sphere for a project presentation with curated PrismArch Design Objects

(PADO)

The UI interface requirement of the Architecture discipline follows closely the Core

Requirements for the VR Interface. This is due to the wide range activities undertaken by

designers at various design stages, described in greater detail in previous deliverables D.1.1

and D.6.1. These activities include, but are not limited to the below:

(1) Design Activities: sketching, 3D modeling, drawing, Informed by references to the

project context (existing conditions), regulatory framework, cultural references

(2) Collaboration between members of the team internally within a discipline as well as

with the members of the wider design team.

(3) Coordination of input of all disciplines - Implies a requirement for clear demarcation

of different disciplines' scopes, maintenance of the authorship and IP protection.

A single model within one environment will help to develop a common holistic

understanding of design by all parties; enable the team to identify collisions.

(4) Arranging meetings with the Client. Involving preparation of comprehensive

presentations documenting current status of the design progress, using

photorealistic polished visualisations, using cultural references, coordinated

multidisciplinary input)

(5) Maintaining record of design decisions made during the lifecycle of the project. (a

requirement to be able to retrieve historical data from the project archive for a

period of up to 15 years).

Adequate security is necessary to safeguard project records, taking full account of

data protection legislation, and safeguarding clients’ confidential information.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 120

(6) Practice and project management.

Overview of all projects, managing division of work within teams; monitoring

progress of individuals and project teams.

Please visit 3.6.1 Cross-Disciplinary Interface and 3.6.2 Architecture-Specific UI Elements for

full scope of what the architectural discipline would like to request for the PrismArch

platform.

■ 3.5.2 Structural Engineer

Despite the rapid development in immersive technologies including more and more

compact HMDs, larger Powerwalls and CAVEs, we encounter scepticism in the structural

engineering discipline for introducing VR into the workflow. [McCabe 2015] attributes such

resistance to the industry’s ‘extensive use of Revit and other 3D-modelling programs’, and

concludes that converting existing BIM models should only require modest resource

commitment. Reflecting on the previous sections outlining the challenges with VR

optimisation, we hesitate to draw a similar inference (sct 2.3.4).

In a few research papers examining VR-integrated workflow, such as one by [Zaker 2018],

we discover that the structural engineering practice has been omitted from case studies.

[Steed 2017] presents a series of engineering use of VR during design reviews and

operational training, yet goes on to comment that ‘despite the opportunities demonstrated,

engineering is still a challenging area for VR, as engineering models are large and complex.’

The lack of effective examples for interrogating structural engineering results in VR assures

us that there are significant opportunities in this area, but also signifies the amount of

research needed to identify the most effective interface design. These upcoming sections

document closer examinations on this topic.

Structural Engineering Workflows

We have initially outlined the following steps as an assumption of how structural engineers

will incorporate the PrismArch VR toolkit into their existing workflow:

1) Outside or Inside PrismArch - The structural engineer examines an architectural model

and produces an abstract model. If the Rhino modelling tools are used, this process

could be undertaken either outside or inside the PrismArch environment (via the

Mindesk API). This abstracted model will form the geometric input for the structural

model.

2) Outside PrismArch - The abstracted geometric model is loaded into external Structural

Engineering software, and structural engineering-specific properties are assigned, to

generate the complete structural model.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 121

3) Outside PrismArch - This structural model is analysed and run in the same external

software.

4) Outside PrismArch - The structural engineering results generated by this analysis

(along with the original properties, or ‘inputs’ of the model) are exported from this

external software and imported into the PrismArch Database.

5) Inside PrismArch - These results can now be visualised and interacted with using the

PrismArch VR Toolkit.

Figure 3.5.2a - Diagram illustrating how PrismArch could be incorporated into structural engineer workflows

This identified workflow is only a hypothetical analysis, however, and does not explain the

structural engineering processes to a suitable level of detail. Therefore, we undertook a

range of studies to interrogate these assumptions. This section of research builds upon and

complements the prior analysis undertaken in D3.1, by contributing the next level of detail

to this process analysis research.

Structural Engineering Interviews - Phase 1

We organised a series of semi-structured interviews with engineers at different experience

levels in AKT. The interview goal was to learn how structural engineers visualise, interact

with, and export structural models currently with the digital tools they have, and where

they feel there are challenges and opportunities.

Phase 1 - Methodology

The planning of these interviews follows the ‘jobs-to-be-done’ technique. As [Laubheimer

2017] highlights, such a method focuses on user problems and needs with the additional

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 122

‘behavioral and attitudinal details’. It presumes that “whenever users “hire” (i.e., use) a

product, they do it for a specific “job” (i.e., to achieve a particular outcome). The set of

“jobs” for the product amounts to a comprehensive list of user needs.”

To synthesise software features from these problems and needs, we carried out design

exercises to determine the most essential few functions to be included in the minimum

viable product (MVP https://en.wikipedia.org/wiki/Minimum_viable_product)

development. We determined specific use case scenarios and arranged workshop sessions

to map out user stories which help us understand how all the features should fit together.

As explained by [Kaley 2021], user story mapping is a widely used ‘lean’ method in user

experience design. It ‘outlines the interactions that the team expects users to go through to

complete their goals in a digital product’. A detailed user story map usually depicts three

levels of user actions at increasing granularity from top to bottom. Even though the levels

are often called by varying names - such as ‘activities’, ‘tasks’, and ‘stories’ - they are stacks

of actions displayed in sequential order across the map.

This ‘lightweight representation’ of the software features not only presents a clear picture

of the structural engineering design activities but also provides a valuable overview of how

activities within different disciplines flow together and intersect each other. This has greatly

informed the design process for the aforementioned cross-disciplinary functions in the

toolkit.

Phase 1 - Outcomes

Based on the varying structural engineering use cases, we have generated four scenarios

where structural results will be shown inside the PrismArch VR. Each scenario is then broken

down into specific actions the engineer undertakes to perform their job.

https://en.wikipedia.org/wiki/Minimum_viable_product

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 123

Figure 3.5.2b - Structural engineer user stories (See detailed views within PrismArch_D1.2_ADDENDUM)

1 Briefing with the architect during early-stage design. The engineer would likely show an

overview of the model without going into too many details. This is to demonstrate a rough

draft of what they are about to analyse.

2 During a structural engineer design review.

a. Reviewing solo or with another team member. Visualising the structural results

would help the engineer build up an all-in-one mental model for how the structure

behaves. This is a form of sanity check. They would examine if the structure was built

correctly to the initial assumptions and that the assumptions themselves were

correct.

b. Presenting internally to other engineers and design/technical directors, e.g., for

mini-milestones. The engineer would present a compiled model where one can

interrogate how it is modelled and how it is acting. They would review the calculated

results by grouping them and everything would be shown together as a designed

system.

3 Presenting to external AEC partners, e.g., during a design team meeting. The engineer

would produce a condensed package explaining the issues or providing a solution. There is a

high level of abstraction in these presented results. They are not literal but have been

selected and filtered corresponding to a specific review objective.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 124

Structural Engineering Interviews - Phase 2

We have conducted the second round of interviews with the same group of engineers as

above. These workshops delved deeper into detailed actions identified from the user story

map. Looking at these actions again from a fresh perspective, the engineers re-sorted their

processes into categories, which will help formulate the information architecture supporting

the interface design (Figure 6).

Phase 2 - Methodology

A powerful tool to uncover the mental model of users from a specific knowledge domain is

card sorting. It is widely practised during the stages leading up to MVP development, where

an information architecture is being solidified to show how the user interface could be

structured.

[Sherwin 2018] argues that a card sorting exercise is often delivered to participants

‘according to criteria that make sense to them’. Establishing the suitable grouping of user

actions could later ensure that we create the interface features matching with users’

expectations. Observing participants undertake this task can also reveal to us some

concealed user habits and attitudes.

Phase 2 - Outcomes

The procedure we implemented in this section belongs to the type of method called ‘open

card sorting’. The engineers were each instructed to group actions in categories that seem

appropriate to them. Some similarities of grouping are starting to emerge as we repeat this

exercise.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 125

Figure 3.5.2c - The groupings and priorities after card sorting (See detailed views within

PrismArch_D1.2_ADDENDUM)

Structural Engineering Operations

To formulate the discipline-specific features required in the user interface, we have to first

understand what types of results the structural engineers hope to extract from them.

Inside the PrismArch VR, three types of operations are imperative for structural engineers to

engage with structural results: displaying, interacting, and exporting.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 126

Displaying Input Conditions Cross-sections

Different material types

Support conditions Fixity

Rotation

Load conditions

Results 3D results
(‘abstracted’/’externally
represented’)

Forces Bending moment diagram

Shear diagram

Axial

Torsion

3D results
(‘on geometry’)

Colouring Forces (e.g., Bending, Axial
Torsion, as above)

Utilisation

Numeric results Reactions

Number values from interaction

Interacting Filtering the Results
with physical criteria

Clipping planes

Clipping boxes

Filtering the Model
with numeric criteria

e.g., Only see Utilisation data, in the range of X to Y

e.g., Only see Deformation data, in the range of X to Y

Scaling Results Deformation/ Displacement (with variable scaling)

Exporting Screengrabs

 Tabulated Data

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 127

Structural Presets

One of the primary user needs we have uncovered through this round of interviews was the

concept of structural ‘presets’ to help engineers arrive at pre-selected results quickly.

As indicated by the previous workflow section, structural engineers perform complex

calculations and prepare structural models within specialised desktop software. The results

of these calculations are then imported into the PrismArch VR platform to be visualised and

interacted with. It would significantly increase work efficiency if the commonly occurring

user selections are configured as presets. For instance, through the click of a button, the

engineer will be able to promptly present some of these refined results during later design

review (see P.143 for descriptions of this scenario). This functionality is also in support of

the critical ‘Tagging’ and ‘Query’ functions described in D1.1, Section 4.4 - Requirement

Collected.

Precedent Studies

We have discovered two precedent examples that showcase potential presets

beneficial for structural engineering operations. Both of these interfaces are still at

early stages in their development, but they are compelling instances for demonstrating

the user needs.

Case Study: EulerVR

Figure 3.5.2d - the user interface in EulerVR

[EulerVR] offers an incredibly straightforward toolkit for structural engineers to visualise and

animate some of their calculation results. The user interface in their beta access is stripped

back to a set of most basic functionalities, including:

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 128

● A colour gradient bar with a customisable range.

● Filtering elements by type (i.e. cross-sections, beams, slabs, walls, background, etc).

● Load cases (i.e. Dead Load, Live Load, etc).

● Contour plot.

● Deformation scale.

● Animation speed.

Some of the user feedback we have received from initial usability testing are:

● The user would like to better customise the colour gradient feature (e.g., colour,

range).

● They stressed the importance of seeing the value ‘0’ indicated on the colour contour.

● They wanted to be able to highlight multiple points/elements on the model, locking in

place the info panel attached to each.

● The animation of the deformation should last roughly 8 seconds for optimal

understanding.

● They mentioned a desire for more options to filter and hide elements (e.g. by groups,

layers, typology, 0D, 1D, 2D, etc.)

Case Study: SolidVR

Figure 3.5.2e - the user interface in SolidVR

SolidVR is a prototype interface by [Akselsen 2019] based on Mindesk API to post-process

components from Grasshopper in VR. To investigate the benefits of VR for structural design,

they created ‘an analysis program meshing solids into 8-node hexahedron elements’. Their

interface focuses on chosen use cases including stress analysis, model manipulation, and

deformation, which are some common analytical needs for structural engineers.

Proposed PrismArch Presets

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 129

We propose two categories of structural engineering presets on different abstraction levels:

Macro Presets

Preset Type Visual Style Filter
Elements

Select
Conditions

Numeric
Values

Scaling Factor

Loading
Diagrams

Customised colours
to differentiate
area

Filter by pre-
defined area

Select which load
case

Customised
range

Figure 3.5.2f - example of a loading diagram

Support
Conditions

 Filter by
condition

Select which
support
condition

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 130

Figure 3.5.2g - the support conditions illustrated in SOFiSTiK

Support
Reactions

 Filter by range

Figure 3.5.2h - example of support reactions

Modal Cases for
the Overall
Stability

Customised colour
gradient for cross-
referencing, from 0
to max or custom
threshold

Show all
elements

Select which
modal case

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 131

Figure 3.5.2i - example of modal cases

Vibration Plots
for Specific
Portions

Customised colour
gradient for cross-
referencing, from 0
to max or custom
threshold

Filter by level Select which
designed option

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 132

Figure 3.5.2j - example of vibration plots for two design options

Overall Building
Conditions (e.g.,
Material
Quantity, Cost,
etc)

Customised colour
gradient for cross-
referencing, from 0
to max or custom
threshold

Show all
elements

Select which
building
condition

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 133

Figure 3.5.2k - example of a windrose diagram in Digital Blue Foam

Micro Presets

Preset Type Visual Style Filter
Elements

Select
Conditions

Numeric
Values

Scaling Factor

Deformation Customised colour
gradient for cross-
referencing

Show all
elements

 All plots show the
same type of
values for
different loading
conditions

Figure 3.5.2l - example of a vertical contour plot of the deflected shape

Deformation Customised colour
gradient for cross-
referencing, from 0
to max or custom

 Select which load
case

 Plot on scaled
deformed
geometry

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 134

threshold

Figure 3.5.2m - example of displacement on deformed geometry

Material Stress Specific colour
gradient based on
limit stress values

Showing only
1D elements

Figure 3.5.2n - example of stresses in the ribs under gravity loading scenario

Material Stress Specific colour
gradient based on
limit stress

Showing only
2D elements

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 135

Figure 3.5.2o - example of shell stresses

Beam Forces Specific color / style
for diagram

Select specific
elements to
show (by
group for
example)

Select which load
case

 Plot the diagram
at scale

Figure 3.5.2p - example of beams under normal forces

Stresses in 2D
Elements

Custom gradient
colours (in this case
white = 0, red is > 0
and blue is < 0)

Select specific
elements to
show (by
group for
example)

Select which load
case

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 136

Figure 3.5.2q - example of shell utilisation

■ 3.5.3 MEP Engineer

 From an MEP perspective, the use of VR has been investigated as a solution and the benefits
were recognised since the first attempt. Initially there were pilot projects set up in VR to
better understand the things that VR offers as a working environment, the quick wins and the
more complex information to handle. A plant room was exported from Revit and added in
Unreal Engine with VR navigation controls giving us the ability to move around the plant room,
investigate the equipment and the first thing we noticed was the advantage of reviewing the
elements in the physical dimensions. Quickly we understood errors such as clearance areas,
valve heights, clashes which were missed or potential health and safety risks.

 Figure 3.5.3a - Footage from video captured while using the VR headset. Source:https://youtu.be/_jftWo850eE

https://youtu.be/_jftWo850eE

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 137

This aided tremendously to the design solution since we were able to improve our design and
recognise additional errors which were missed while working in the computer monitor.

We also wanted to enhance the use of VR and wanted to visualise the data of the elements.
This led us to further develop our skills and ended up with a widget which demonstrated the
data the element contained.

Figure 3.5.3b - Screenshot of footage demonstrating the data visualised in real time environments.
Source:https://youtu.be/M6OlHWJuDCE

Due to the innovation that PrismArch is intended to offer, we would require this data to be
demonstrated within the VR environment. There are different levels of data addition within
a construction project as the project matures. The different RIBA Stages define the amount
of data which an element needs to have. The example below demonstrates the data added
to a transformer from Stages 2 to 5:

Figure 3.5.3c Basic information of a transformer. Source:https://toolkit.thenbs.com/uniclass/ss

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 138

Figure 3.5.3d - Different levels of information of a transformer as the project matures.
Source:https://toolkit.thenbs.com/uniclass/ss

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 139

○

Figure 3.5.3e - Advanced level of information of a transformer. Source:https://toolkit.thenbs.com/uniclass/ss

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 140

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 141

Figure 3.5.3f - Complete level of information of a transformer. Source:https://toolkit.thenbs.com/uniclass/ss

We would need to include this data into the VR environment and through tag visualisation

to be able to bring them to the user interface.

The data within the models is not something new. However, the latest web technologies
brought this data into the web environments. A similar approach can be followed in
PrismArch.

Figure 3.5.3h - Example of 3d model data within a web based environment. Source: Autodesk BIM360 web
environment.

This information is added in the initial specialist software and transferred to PrismArch. The
parameters are set up in the project file and the data can be added either manually or
automatically based on the commands the user is executing.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 142

Figure 3.5.3i - Example of parameters and data within an electrical project file developed in Revit

The data can include engineering solutions such as electrical calculations, mechanical flows,
pressure drops etc.

To better understand the needs, two examples for an ideal usage of PrismArch are given
below:

Example 1:

An MEP user is viewing level 3 of the building within the PrismArch environment. The
architectural and structural models are loaded and the user is drawing electrical elements for
space allocations. After the user finishes the task, they must check for any physical clashes
between elements.Either by using the PrismArch UI tools (or ideally by using the proposed
PrismArch speech recognition tools) the user is able to view the mechanical model initiate the
clash detection process.s. The user is also able (through either UI or speech interactions) to
toggle the visibility of the the mechanical model within the overall design..

Example 2:

The MEP user is navigating within a plant room. The user selects an element by pointing it
with the VR controllers and uses the speech tool to bring information within the user
interface. For example, the user might say “bring up the user manual” or “bring up the data
sheet” and the platform reveals the relevant data.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 143

○ 3.6 Proposals for the VR Interface

■ 3.6.1 Cross-Disciplinary Interface

3.6.1.a User Interface Design for On-boarding

Figure 3.6.1a - Diagram illustrating on-boarding usage scenario

By default an individual can access the PrismArch platform as a “private entity”. The user
will have to register and Login to company branded Personal Work Sphere within one of the
AEC disciplines organisations. With company credentials, IH gains access to the information
about projects, as well as companies proprietary tools etc. Any content and IP created by
employee IH is a property of the company and will remain within its sphere.

The deliverable D6.1 outlines the purpose of sphereing a immersed human unit including
the Personalisable and Customisable User Interface, by explaining as below;

“PWS is a customisable personal work environment that contains a digital representation of the immersed

human and his/her Personalisable User Interface (PUI). PWS is an individual unit for each IH and this enables

individual recognisable and interactable inside the PAW. With the registered personal information about

discipline and role types, the system allocates each IH to one of the collective units (most likely a company

name), Collective Work Sphere (CWS).”

(D6.1, sct. 1.2)

On-boarding is a process to compound user tailored project space and every participant,
therefore, is asked to configure and confirm its personal settings in order to access the
PrismArch platform embedded system, core as well as user proprietary tools and
functionalities. A usage scenario described below, aims to illustrate an on-boarding situation
where the user choses a project and loads project PrismArch Central Model (PCM) with the
associated project information. How the interaction works can be compared with the folder
explorer on PCs. This self referencing VR User Interface and Interaction logics can be applied

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 144

throughout the platform.

Below illustrates the user on-boarding storyboard, starting from selecting a project location
and until entering the Project Sphere:

Figure 3.6.1b - On-boarding Storyboard Part 1/4

First, the user sees a hologram like a globe with different project locations. The user hovers

a location to read the project description. The popup Billboard UI with an annotation line is

scrollable to see the entire panel content. The projected content could include a project

thumbnail, project information, year, stage etc.

Figure 3.6.1c - On-boarding Storyboard Part 2/4

After the user confirms the selection, a new sphere pops up at the annotated location. Now

the user sees a low resolution model or the thumbnail image.

Figure 3.6.1d- On-boarding Storyboard Part 3/4

Next, the user confirms the selection and sees another set of spheres popping up from the

selection source. When the user hovers the sphere, the glow colour changes. The

highlighted colour can be a discipline-specific registered colour. Each sub-spheres would

include different content such as a site image (jpeg), diagrammatic floor plan (pdf), technical

drawing (dwg), commentary (txt), structural data (txt).

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 145

Figure 3.6.1e- On-boarding Storyboard Part 4/4

Lastly, the user interacts with the sub-sphere(s) to visit the relative PADO. After a

confirmation message, there is a blank loading screen, and then the user is teleported to the

suggested system location.

Below are images from a VR experience that demonstrates the user on-boarding experience

explored in the above:

Figure 3.6.1f - On-boarding Storyboard VR mock up

3.6.1.b User Interface Design for Personal Work Sphere

The PrismArch Central Model (PCM) is located at the fixed location and real scale, this is
essential for multidisciplinary collaboration and coordinating design input by all disciplines.
Therefore in order to interact with the PADO at different scales, the IH as well as PWS needs
to adjust their scale as required.

As the scale of projects varies depending on their typology and scope agreed in professional
service contracts with clients, navigation by IH in VR space is therefore an important
consideration. IH needs to be able to move intuitively and comfortably, sometimes covering
vast physical distances in order to be able to interact with any of the core PA classes.

The Level of detail (LOD) of the PADO visible to IH from different distances and scales,
should be adaptable, and adjusted accordingly. Similarly the same adjustment should apply
to the metadata information, and other UI elements such as tags, labels etc.

In order for IH to be able to orientate themselves within the project overall scale e.g. while
working on different scales, the provision of a project 3D/2D minimap is an essential part of
the user interface.

Based on the range of tasks undertaken by design teams on construction projects, as
documented in D1.1, ZHA has developed a storyboard. This includes use case scenarios,
which describe situations the PA users are likely to experience frequently. This allowed the

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 146

team to identify and illustrate top level interactions occurring within the platform.

IH Interaction with PADO
A User scenario described below, aims to illustrate an example of basic interaction between
IH and PADO:

First, as a user accesses a private villa project, he/she has a general oversight of the DO, and
can see top level project information (e.g. project name, current version, last update
date...). As IH moves closer to the PADO and adjusts their scale, more information is
displayed - the designer can see individual parts of the project with relevant information e.g.
about other designers assigned to particular parts).
Last, IH select the part he/she wants to work on. The PADOs are highlighted and displayed
at the highest level of detail, so that the designer can now manipulate design features using
design tools such as Mindesk or review models at 1:1 scale.

Figure 3.6.1g - Example of the Immersed Human interacting with PrismArch Design Objects

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 147

3.6.1.c User Interface Design for Meeting Sphere

Individuals need to be recognised by the collective in multipresence, co-authoring, and
cross-disciplinary situations. This could be done through personalised avatars, name tags,
organisation name, color coded by discipline. Content created by different disciplines has to
be demarcated and authorship retained in any circumstances within the PrismArch
platform. Further distinction is required to indicate who among meeting Participants is the
meeting Host and/or the Presenter. During the course of the meeting, the Host remains
persistent, however the Presenter can be passed on to the other team members, enabling
them to show their content, when required. Please see a more detailed usage scenario for a
meeting sphere arrangement for a cross disciplinary situation in D6.1, sct:1.2.

User scenario extract from D6.1, sct 2.1 can be found from below:
“PD_A opens the dashboard on his Personal User Interface and accesses the contact list widget. He selects all
the current project members in the list, then filters the ‘internal kick-off’ tag to clipboard the spatial hyperlink
(to the world coordinate of the arranged meeting sphere). He confirms the invite after filling in meeting
information such as the meeting name, time, number of attendees/size.

Each attendee receives a meeting sphere link and visits the arranged location and rotation by entering the
link from individual PWS at the arranged time. The event is automatically added to their calendars in the PUI
dashboard.”

Types of User Interfaces accessed within the Meeting Sphere can be:

Personalisable and Customisable User Interface

● to view contact list
● to invite attendees
● to accept the invitation
● to fill in meeting information
● to change display modes
● to execute some of the shortcuts (e.g. Commenting and Markup, Clipping Plane,

Toggle Camera functionality etc …)

 Query User Interface

● to demarcate and tag to curate meeting and presentation assets
● to visit the arranged Meeting Sphere (in a similar way to the interaction explained in

…)
● to record, play and pause meeting content

As mentioned thoroughly in the document, we would like to highlight that the PrismArch
Core Functionalities should work in any condition inside the PrismArch VR platform.
Functionalities below would be expected to be used often by the users inside the Meeting
Sphere.

PrismArch Core Functionalities

● Commenting and Markup functionality

● Clipping Plane functionality

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 148

● Toggle Camera functionality

● Toggle View Mode functionality

Specialist and Proprietary Tools

● Zoom, Skype and/or alternative Steam or other Voice Chat

functionalities

● Simulation tools

Based on frequently encountered user scenarios and sphereing levels we classified meetings
as follows:

1. Internal team meeting SL2 (design review, collaboration)
Locations and scales are carefully selected by the host to review specific aspects of
the design. During the meeting IHs sketch, redmark, 3D model, call up references,
switch between various display modes, and make notes.

2. Multidisciplinary coordination meeting SL3 (to review and discuss solutions to
design issues)
Locations and scales are carefully selected by the host to review and coordinate
aspect of the design;
During the meeting members of the design team review content produced by
different disciplines. This content has to be clearly demarcated and recogniseable.
Assets such as structure and MEP are hidden behind architectural envelopes; there is
therefore a requirement to be able to display the “hidden” PADOs.

3. Client, project stakeholders meeting SL4 (a curated tour of a project)
Locations and scales are carefully selected to curate the presentation narrative
Polished photorealistic display mode is most likely to be used in this scenario (with a
possibility to change it to review aspects of the project if required)

4. Content accessible by the wider public SL5 (large audience events such as lectures,
exhibitions, conferences)
Limited editing capabilities, Protected IP of authors

Regardless of the purpose for the meeting, there is a persistent functionality required for
meetings at all levels:

● Changing display modes (“clay”,photorealistic, xray, etc..)
● Reviewing design issues in different locations and at different scales

(flexibility to adjust scale and location when required)
● Redmarking
● Modeling
● Recording notes
● Immersive meeting capture
● Team member authorship demarcation, disciplines content demarcation
● Automatic tagging of a content created during the meeting

Regardless of the organisational association IHs should be able to prepare and curate the
information to be discussed during meetings. From individual designer/engineer reviews,
communicating with and coordinating multidisciplinary input, through to polished client

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 149

presentations.

Each meeting has a purpose and should be conducted in an organised manner.
Users should be able to prepare the meeting including a preset of locations in 3D space at
an appropriate scale to be able to present and discuss particular aspects of the design.

Figure 3.6.1h - Examples of Meeting Sphere locations and meeting purposes

Meetings should take place in a PrismArch Meeting Sphere. The UI should enable users to
customise meeting spheres in order to accommodate different numbers of participants and
accommodate the need to examine PADO at various scales. This should allow IH flexibility to
host a range of different meetings.

Meeting spheres should include assets such as tables and chairs, these are necessary to
mirror the IH's standing or sitting position in the physical world. Their presence and number
could be a part of a meeting preset.

Objects such as plinths, presentation panels, and a screen are required to facilitate any
needs of a host to curate the meeting content. Prior to and/or during the meeting the users
should be able to prepare all necessary material and references to support his/her narrative.

Once the meeting is concluded, the Meeting Spheres should be saved and archived to form
a record of decision making throughout the life cycle of the project (the Golden Thread of
project information). All of the items produced during the meeting should be automatically
tagged and later become accessible by the participants, as they work on a solution within
their organisations and PWS.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 150

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 151

The example of output items could be: Work in progress Instance of the 3D model, sketches,
markup, meeting minutes, action points, agenda for the next review, Capture of the
immersive scene - if agreed by all participants.
The recording of a meeting should be possible to revisit in VR or on the screen.

Below reference to examples from the gaming industry, such as a scene from Cyberpunk
2077 [Cyberpunk 2077] illustrates well the recording and re-visiting a meeting scenario.
Player records the scene and then revisits the recording from the third person perspective.
Design issues, itemised in the meeting minutes should be hyperlinked to physical locations
in the scene. The recording camera functionalities can be associated with the Toggle Camera
functionality and Toggle View Mode functionality (as part of the PrismArch Core
Functionalities).

Figure 3.6.1i - Reference to revisit a meeting record, from the computer game[Cyberpunk 2077].

Top shows a first person view and bottom shows a third Person View.

Figure 3.6.1j - Reference to X Ray d vs. Photorealistic display modes, illustrating the difference between
revisiting a meeting and attending a meeting. Screenshots from computer game [Cyberpunk 2077].

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 152

3.6.1.d User Interface Design for Content Query and Demarcation

In section 3.4, the three types of User Interfaces in the PrismArch VR platform are proposed;

Personalisable and Customisable UI, Billboard UI and Query UI. The terms of Personalisation

and Customisation also is explored in the section. Section 3.6.1.a introduces a storyboard

for the user to interact with a Billboard UI.

This section focuses on the user interaction with Query User Interface. Importantly, it

should be noted that modifications of Design Objects (architectural geometries) are not

included in the section - as these aspects will be covered by proprietary modelling software

and applications such as Mindesk, and will be elaborated upon in other Deliverables (D4.2,

T5.2, etc). The design experiment covered in this section is a demarcation tool for PrismArch

contents that work inside the PrismArch World. Final tool should function to demarcate all

four types of PrismArch root asset classes, and this should work for all project types and

project scales. The tool should be intuitive, flexible and adaptable to different User Interface

Modes.

Query User Interface

In the deliverable D6.1, Sphereing Level is proposed to organise and demarcate project

metadata and information in order to maintain a safe, efficient and continuous collaborative

VR experience. As the project grows, larger amounts of project metadata and information

will be created, collected and stored inside the PrismArch Singular Data Space. This creates a

complex data nest. The Query User Interface enables to filter user demanded inputs from

the project data nest, and helps to visualise the filtered information with simple geometries

(Metadata Nodes). The user interacts with the Metadata Nodes to preview and trace back

the associated project information. The proposed tool enables the user to load queried

Design Objects and its associated project metadata and information. In the deliverable D6.1,

the Query User Interface is defined as ‘an equivalent to a three dimensional project folder

structure with a time scale and it is a dynamic navigation functionality with spatial

hyperlinks to project design objects …[and] each node would represent a project folder

and/or file, for instance, a site image (jpeg), diagrammatic floor plan (pdf), technical drawing

(dwg), commentary (txt), structural data (txt)”.

“High level manual sphereing is necessary for curating information specific to the needs of an IH. Whether it is

to describe a certain aspect, to make a distinction, or to inform others, selected information needs to be placed

in a specific context, and certain aspects brought to the foreground. Whenever the IH wishes to explain their

reasoning, either as part of a dialogue with another IH or for a presentation to another discipline, they

manually bring together and cast a net around a subject or several subjects and several core classes. This has

the function of describing certain aspects or certain parts of the selected information, by giving them a name

and a distinction, as well as recording the date, time, and location of this particular selection. This is part of the

multidisciplinary aspect of looking at the same information, but forming independent inputs from unique points

of view and areas of experience.”

H.Kinzler, D.Zolotareva et al, 2021.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 153

Figure 3.6.1k - Examples of BigData Visualisation Layouts, Sviatoslav Iguana, 2019

Figure 3.6.1l - The user hover/point at a Metadata Node and Billboard UIs appear near the selection

Figure 3.6.1m - The user drops multiple control points to demarcate multiple Metadata Nodes. Billboard UIs

appear near the selection

Following aspects must be considered to interact with Metadata Nodes;

● Single as well as multiple Metadata Nodes can be interacted with the user

● The demarcation tool should work intuitively regardless of target amount, work

mode or class type

● The user needs precise control within the selection action, meaning there should be

several steps before the user confirming the selection

+ Preview: the user hovers each or multiple nodes to check the selected project

information. The user optimises the selection by de-selecting, re-selecting the

queried Design Objects or Metadata Nodes

+ Confirm the demarcation: to execute the Query function to load Design

Objects and the Metadata Nodes

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 154

● Each Metadata Node can be pointable(hover-able) and/or selectable:

+ By hovering a node, the user can display its Billboard UI which includes the

relative project information. The information LOD and the Billboard UI

location depends on the User Interaction Mode, whether the user interacts

with the avatar hand or with a ray attached to the hand. The Billboard UI can

also be displayed as a Head Up Display (HUD), near a finger tip, or at the

Node location (Figure 3.6.1l and Figure 3.6.1m).

+ By selecting single or multiple nodes, if there is any valid location information

provided for them, the user can navigate from one node to the next, thus

following ‘the golden thread’ of the project’s development. As explained in

On-Boarding storyboard in section 3.6.1.a User Interface Design for On-

boarding (Figure 3.6.1f).

● Metadata Nodes can be minimised or maximised with the user’s preferences. For

instance, the Medata Nodes can be minimised or hidden when the user would like to

focus on modifying Design Objects via a proprietary modelling software and

application, or these can be maximised to review specific project information inside

a Medata Node (Figure 3.6.1n and 3.6.1m)

Figure 3.6.1n - The user hovers/points at a Design Object. The associated Metadata Nodes are closed and the

user sees the detailed asset information on the Personal User Interface

Figure 3.6.1o - The user hovers/points at a Design Object. The associated Metadata Nodes are closed and the

user sees the minimal asset information on the Personal User Interface

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 155

Figure 3.6.1p - Diagrams illustrating the transformation of the demarcation tool

 Billboard UI and Work Space Occlusion

The query result might be large enough to clutter the loaded Metadata Nodes due to the

complex nest of project information. This would cause the user to experience occlusion

issues where some of the Metadata Nodes and the attached Billboard UI being hidden by

other nodes rendered in front of them. Traditionally, in gaming, these problems are solved

by post processing rendering to outline and/or filling the target in front of everything (Figure

3.6.1q). This method would work well, for example for avatars, however, it would not work

with cluttered Metadata Nodes as it only renders the outline of the cluttered region.

Figure 3.6.1q - Traditional occlusion solutions in gaming, Tom Looman, 2019

Figure 3.6.1r - Diagram illustrating a user occlusion condition, F.Argelaguet and C.Andujar, 2013

One of the suitable solutions to our case would be rotating the selected Metadata Nodes

like a turntable to research the content behind (Figure 3.6.1s and Figure 3.6.1u). Another

solution can be the user selecting specific Metadata Nodes and bringing them near their

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 156

viewpoint, any nodes connected to the interacting source could follow the interacting node

(Figure 3.6.1t). In addition to the above, text scale and rotation also should be updated. This

can be in ratio to the source Metadata Node scale or can be the distance between the user

and the Billboard UI (please find more information in the storyboard in section 3.6.1.b User

Interface Design for Personal Work Sphere). Density and population of the nodes are vital to

consider, too and this might be solved by scaling the selected Metadata Nodes (Figure

3.6.1v and Figure 3.6.1w). The information LOD can be high when the selected nodes are

larger, it can be low when the selected nodes are smaller. The text size can be small for

higher information LOD, and the opposite for lower information LOD.

Left: Figure 3.6.1s - Example of Metadata Node navigation using a turntable feature, GraphVR

Right: Figure 3.6.1t - Physics based interaction with nodes, Force Directed VR

Figure 3.6.1u - Diagram illustrating precision and accuracy in the user selection of Metadata Nodes

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 157

Figure 3.6.1v - Example of scaling a Metadata cluster, GraphVR

Figure 3.6.1w - Diagram illustrating a Metadata Node scale and the Metadata visualisation Level of Details

Another aspect to consider to interact with the Metadata Nodes is the maximum number of

nodes to be able to visualise using game engines in the first place. In other words, there

might be a limitation in the number of queryable information at once. This is because of

performance issues, in fact, GraphVR (2019) explains that the number of loadable sphere

actors is “... typically with a maximum value of around 300 nodes. This limit is due to the

management of the number of Actors, in fact there is one for each node. It is also necessary

to consider all actors that represent the arcs, the lights, the avatar, the billboard and

everything that is part of the scene. Being the compute complexity very high, it has become

necessary to find a compromise between rendering quality and system fluidity by reducing

the Level of Details of the actors”.

Minimising the Query User Interface would be helpful for the same reason for the

Personalisable and Customisable User Interface, this will also help the user to have more

free space to work on other tasks, or to focus to work on the Design Object modification

using other proprietary modeling software and applications by completely hiding the Query

User Interface (Figure 3.6.1n and Figure 3.6.1x).

There are a few examples that attempt to visualise Metadata inside VR, such as GraphVR

and Force Direct, both developed using Unreal Engine 4 (Figure 3.6.1s and Figure 3.6.1t).

These examples use a two-dimensional layout similar to Gephi’s 2D layout and a three-

dimensional based layout called Force-Directed layout. For PrismArch Metadata Node

interaction, we would not require such extreme physics based animations, however, it is

ideal to implement minimal haptic feedback for the demarcation tool in order to design an

intuitive user interaction.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 158

Figure 3.6.1x - Example of minimising a Metadata Node cluster, Force Directed VR

PrismArch Medata Nodes can be visualised by:

● Spawning blueprint actors inside the VR space with math calculations

● Particle simulations such as Unreal Engine Niagara Simulation System (e.g. Flocking

simulation and Position Based Dynamic simulation etc)

However, particle simulation is not a VR suitable solution because it is performance

expensive (Figure 3.6.1y) and considering the fact that each Metadata Node would include

programmed functionalities, it would be ideal to spawning actor class objects inside the VR

world.

Figure 3.6.1y - Flocking Simulation (left) and Position Based Dynamic Simulation (right), Weiner ‘Niagara Effects

Inside Unreal’

STORYBOARD: Querying and Interacting with Metadata Nodes and Design Objects

Figure 3.6.1z1 - Query Storyboard Part 1/3

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 159

Figure 3.6.1z2 - Query Storyboard Part 2/3

Figure 3.6.1z3 - Query Storyboard Part 3/3

■ 3.6.2 Architecture-Specific UI Elements

3.6.2.a User Interface Design for Scope and Task Demarcations

This section proposes architecture-specific UI elements. It should be highlighted that the
proposal below should also work across disciplines to achieve a continuous experience
throughout the platform. The section content is placed because the functionalities are
expected to be used by architectural disciplines in the early project stage, which is a rare
case for the other two disciplines.

IH may wish to create an instance of the PrismArch Central Model (PCM) in order to develop
a design proposal. This would mean that the instance of the model would be placed in their
PWS on Sphereing Level 1, visible only to individual IH at this stage. IH can then manipulate
the instanced DO using 3D modeling tools such as Mindesk, and create a number of design
options.

The example below illustrates IH intending to work on a particular aspect/space of a project.
IH wants to extract a portion of the model and isolate it in order to develop a design of
interior space, IH has to define a clipping container. The content within this container is then
trimmed out of the PrismArch Central Model (PCM) and extracted as an instance in PWS.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 160

Figure 3.6.2a - Extracting a portion from the PrismArch Central Model

The extracting container leaves a trace in the original location, where the portion was taken
from, to allow for its insertion back to the original location. IH can extract a number of
instances, which should be visually distinguished from the PCM.

Figure 3.6.2b - Creating instances of the PrismArch Central Model extracts

3.6.2b User Interface Design for Archiving and Retrieving Design Options

This may include review of previous proposals, alternative design options, etc.
In this scenario the designer recalls previous versions of the massing proposed for the Villa.

Figure 3.6.2c - Retrieving the archived Design Objects using the Query User Interface and Medata Nodes 1/2

In order to do that IH queries historic 3D models of the villa. The result is being displayed in
a form of metadata nodes.

Figure 3.6.2d - Retrieving the archived Design Objects using the Query User Interface and Medata Nodes 2/2

IH can select a number of models he/she would like to recall by selecting corresponding
metadata nodes. After the selection is confirmed. The models are Instanced into their PWS
at Shereing level 1.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 161

Figure 3.6.2e - Loading the archived Queried Design Objects

The Instances with their tags are editable in PWS

3.6.2.c User Interface Design for Creative Boards: Mood Board and White Board

During the design process, the user has access to external references. These references can
be mixed-media, such as hand sketches, site photos, 3D sketches, material image
references, clients’ cultural references. For more information. Please visit the deliverable
D1.1.

Figure 3.6.2f- White Board and Mood Board

3.6.2.d User Interface Design for Analytics and Simulations

Proprietary simulation tools and applications
Environmental (Sun, Wind, Thermal modeling), CFD, acoustics(sound simulation), structural
etc..any other custom analysis play a vital role in the evaluation process. Architects also
include the simulation results, calculated with their prefered proprietary tool, in their
submission documents. These are also often presented in front of potential manufacturers
to deliver their ideas and also helpful for feasibility studies in early design stages.
Results Inform decision making during the design process, proof of concept and are helpful
during the client presentations. The Results are visualised through heat maps and can be
loaded with a PrismArch tag via a user’s preferable proprietary tool.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 162

Figure 3.6.2g - Loading Sun Simulations inside an arranged Meeting Sphere

Figure 3.6.2h -Examples of Environmental analysis Image Copyright: ZHA

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 163

■ 3.6.3 Structural Engineering-Specific UI Elements

Conceptual Visualization of Structural Elements

The vast majority of structural elements can be defined using a small number of simple
abstract representations - lines to represent columns and beams, meshes to represent walls
and floors, and so on. These basic elements are assembled into the schematic ‘stick’ or
‘mesh’ models used throughout contemporary structural engineering design. These abstract
conventions have several advantages:

● The engineer can construct simple yet accurate ‘mental maps’ of a structural design.
● Analysis algorithms can operate on lightweight memory objects, which are easily

convertible into graph structures (nodes, edges) and easily processable by linear
matrix solvers.

● Graphics algorithms can visualize the required information with a minimal number of
rasterization primitives.

We therefore propose a UI for structural engineering elements in VR that builds upon these
established conventions, expanding them to offer visually engaging and interactive
elements for the user, that can be queried in real-time. By using 3-dimensional geometries
for all elements, we believe the PrismArch UI will always properly convey a sense of depth in
VR, thus avoiding the problematic flattening and overlapping data visualisation issues that
currently occur in existing 2D structural engineering interfaces. (For examples, see
Deliverable 6.1, Section 3.2, and also Section 5.2 of this document: PrismArch Structural
Engineering Interviews).

Linear Elements as Thickened Line
In order for linear elements (beams or columns) to maintain an engaging and legible
appearance in VR, we propose they are displayed as thick pipes instead of dimension-less
wire frames. This allows the user to perceive depth more easily in VR and avoid moire-link
overlap illusions, and it also allows the abstract elements to shade each other, further
enhancing the user’s spatial perception. Lastly, it provides an opportunity to display
information on the elements themselves - such as ruler marks, or important annotations/
notes - that are attached at specific points along the beam or column.

The Query Handle
Any linear element should be able to be queried about its local properties. We propose the
Query Handle, a 3-dimensional UI element that can be dragged along the length of a
structural element using common VR gestures (for example fist clench, or trigger press
followed by dragging horizontally / vertically). As the user drags the query handle along the
length of the element, the underlying data is sampled locally and presented as options to
the user via a floating, 3D window.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 164

Figure 3.6.3a -Sampling a structural element at a location and viewing its sectional properties.

At a sampled location, users can choose to display a number of data. For example:

● General sectional properties of the element

● Continuous Stresses (forces) applied to element

● Strains (deformations) of the element in response to stresses

● Reaction diagrams (moment, shear)

In the example below, we present an example of a user displaying the Bending Moment

diagram of a beam, and querying it locally.

Figure 3.6.3b - Sampling a structural element at a location and inspecting its bending moment diagram at a

specific location.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 165

Figure 3.6.3c - Visualization of structural member’s bending moment diagram, and sampling at a specific point

along the length with the aid of a “grabbable” 3D handle.

The Force Arrow

In the case of non-continuous stresses - such as concentrated point loads - the continuous

sampling along the length of an element cannot be reasonably defined. Instead, such types

of forces should be represented as cylindrical 3D arrows, that are legible from all angles, and

each with a paired disk element that indicates their exact application point along the linear

element. Textual descriptions of their magnitude floati next to them in 3D space. The scale

of these arrows has to be either dynamic or user-aware, to avoid situations in which a users

zooms in, and these arrows become enlarged and obscure the underlying model.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 166

Figure 3.6.3d - 3-Dimensional point loads.

Figure 3.6.3e - 3-Dimensional point loads. Zooming-in changes the scale of the arrows and disk indicators.

The Planar Arrow Group

In the case of linear distributed loads, the requirement is for a UI element that can

demonstrate the directionality of the load, can be clearly different visually from point loads,

can have the ability to be queried locally using the query handle, and finally can be visible

even from very oblique angles. For these reasons we propose the Planar Arrow group,

essentially a combination of a planar diagram corresponding to the distribution of Load

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 167

along the length of the beam and an array of 3D arrows, indicating the direction of the

forces and allowing the Load to be partially seen even from angles parallel to the beam’s

direction.

Figure 3.6.3f - 3-Dimensional Line Loads (above) and local sampling of the Line Load (below)

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 168

Figure 3.6.3g - 3-Dimensional Line Loads. 3-D arrows attempt to solve the issue of looking at the element from

the side.

Support Conditions

No structural engineering element can be defined without support conditions at its end

points. By support conditions we mean the degrees of positional and rotational freedom

that an element has at connection points with other elements. These support conditions are

clearly defined in existing structural engineering literature and practice, and use a

standardized international set of 2D symbols.

We therefore propose that the PrismArch VR representation of these conditions be simply a

set of 3D symbols that directly inherit the main properties of their 2D counterparts, in order

to avoid any ambiguities as to what condition each refers to.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 169

Figure 3.6.3h - 3D Representation of most common support types. From left to right:

Fixed, Roller X, Roller Y, Pinned X, Pinned Y, Beam Hinge.

Figure 3.6.3i - 3D Representation of Fixed support (left) and Pinned supports in 2 orthogonal degrees of

freedom (right)

Figure 3.6.3j - 3D Representation of Roller supports in 2 orthogonal degrees of freedom (above) and Beam

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 170

Hinge (below)

Mesh Visualization

Mesh elements are displayed with false-colours to represent ‘embedded’ analysis data. This

colouring is most easily achieved via vertex colours, however texture mapping is also

possible, depending on the format of the input analysis data. The types and categories of

analysis data that must be achievable through this process are defined in the previous

Displaying-Interacting-Exporting table (Section 3.5.2.).

To aid legibility of the data, it is greatly advantageous if the false-colours assigned to meshes

are not allowed to blindly linearly interpolate between the underlying data values present at

the mesh vertices. Instead, a far more coherent and legible visual effect is achieved if the

output colours are ‘bucketed’ or ‘banded’ to produce gradated contour plots (the effect is

akin to isosurfacing techniques). See the image below for a good example of this effect:

Figure 3.6.3k - Interactive visualization of a beam’s deformation.

The deformation shown above is based on displacement data stored on the structural mesh’s

vertices as normalized values (0-1 range). The underlying raw data is used to colorize and

contour the mesh interactively in the HLSL shader’s Fragment stage, while the exaggerated

deformation is being calculated in render time in the shader’s Vertex stage.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 171

Full Building Visualization

Both linear and mesh visualization modes are applicable to models of entire buildings. In

this case however, the individual per-element data (described above) should be hidden from

view in order to avoid visual clutter, and only basic color information should be retained, to

aid the user in understanding the assembly as a whole. It is important that the user retains

the ability to still operate global filters: hiding elements based on their type and/ or their

attached properties.

■

Figure 3.6.3l - Representation of a full building’s structural meshes, colorized interactively by their loads,

stored in each mesh’s vertices as normalized values.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 172

■

Figure 3.6.3m - Simplified, schematic view of the building’s structure. Columns, beams, nodes and surface

elements have different visualization style.

Figure 3.6.3n - Highlighting of the building’s columns.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 173

■

Figure 3.6.3n: Highlighting of the building’s beams.

Element Selection

It is rare in structural engineering for a single isolated element to be of interest. More often,

that element is of interest in relation to other elements surrounding it. Therefore, we

propose an element selection behaviour in which the selection of an element triggers the

selection of its neighboring elements too, while all other element in the model switch to a

“ghosted” mode (no colour, low material alpha) - allowing the user to focus on the selected

element and its immediate relationships.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 174

Figure 3.6.3o: Graphically selecting elements, and automatically isolating their topological neighbors

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 175

■ 3.6.4 MEP Engineering-Specific UI Elements

The MEP disciplines can have a broad number of UI Elements. Each discipline can take
advantage of the innovative tools PrismArch may offer. What would be required is the
ability to review, inspect and highlight issues similar to what existing software does in the
traditional PC environment. However, the information added as parameters within the
project files should be available in the IH’s headsets.

We would propose that the best way to visualise the data of an element would be a widget
which the user has attached to their wrist. The user can then point at an element and select
it and the relevant data appears on the wrist display.

Figure 3.6.4a BIM widget in VR. Source: https://youtu.be/mhCxFudzFX4

This would aid the process of identifying and reviewing elements and their properties. This
could also be enhanced with search or filter tools to aid in finding the desired parameter
instead of endless scrolling. This scrolling can be achieved with the motion controller’s
thumbsticks. The trigger buttons should be used for selection and there should also be an
ability to increase/decrease the selection ray curve.

Additionally, the UI should be able to demonstrate clash detection results with the elements
highlighted. A good example can be driven from Navisworks software.

https://youtu.be/mhCxFudzFX4

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 176

Figure 3.6.4b Example of a clash in Navisworks. Source: https://youtu.be/v6HtMKme3Ck

The ability to inspect and review the clashes should be aided from the clash detection report.
The report can be produced in a variety of formats and inserted in PrismArch. Excel, .HTML or
.XML files are compatible formats to perform this task. The report should contain all elements
ID’s, and be searchable within PrismArch.

The IH should be able to inspect the schedules and quantifications within PrismArch and these
should be updated in case a user makes a change (e.g. deleting an element within PrismArch).
This data should be transferable back to the software the information was initially produced
within.

Figure 3.6.4c Screenshot of a schedule within Revit. Source: https://www.cadlinecommunity.co.uk/hc/en-
us/articles/115001913009-Revit-Copying-a-Standard-or-Custom-Schedule-to-other-Projects

https://youtu.be/v6HtMKme3Ck

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 177

Figure 3.6.4d Screenshot of a quantification workbook in Navisworks. Source:
https://www.researchgate.net/figure/Quantification-workbook-of-Navisworks-Validation-by-stakeholders-

The-advantages-of-BIM_fig6_326904461

These tools and approach can be applied in other disciplines beyond MEP. The MEP user
should be able to use the same tools as mentioned in 3.6.2 for navigation, selection etc. For
energy analysis, etc, the tools mentioned for shadow and sunlight simulation should also be
available to the MEP user. HVAC and electrical calculations can be pushed to the MEP user
widget.

https://www.researchgate.net/figure/Quantification-workbook-of-Navisworks-Validation-by-stakeholders-The-advantages-of-BIM_fig6_326904461
https://www.researchgate.net/figure/Quantification-workbook-of-Navisworks-Validation-by-stakeholders-The-advantages-of-BIM_fig6_326904461

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 178

●

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 179

● 4.0 SUMMARY
The ontological and interface requirements defined in this Deliverable will now be integrated
into the timelines and technical delivery phases within the scope of Work Packages 2 to 6.

As these requirements are discussed and evaluated further, they must be prioritised to
achieve the critical functionality necessary for the Deployment phase (Months 13-14),
followed by first Pilot Studies and user testing due to occur in Months 15-16. See [PrismArch
Grant Proposal] P.50 for further details. These tasks are overseen by Work Package 6, T6.2/
T6.3.

In the process of prioritising functionality, some may be determined to be beyond the scope
of first Pilot Studies, in which case they could be held back for the second Phase of testing
(Months 23-24). Other functionalities might even be determined to be beyond the scope of
the entire PrismArch Horizon2020 research. In such a situation, those aspects will be diligently
documented, and implementation proposals will be provided, such that these functionalities
could still be developed by external parties after the conclusion of this research grant.

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 180

● 5.0 APPENDIX

○ 5.1 References

PrismArch Documents

Deliverable D1.1 (2021, March). “Report on current limitations of AEC software tools, leading to user and
functional requirements of PrismArch”.
URL: https://prismarch-h2020.eu/download/472

Deliverable D3.1 (2021, May). “Report on cognitive issues in VR-aided design environments”. URL:
https://prismarch-h2020.eu/download/480

Deliverable D6.1 (2021, July). “Define the architectural projects and usage scenarios for demonstration and
evaluation”.
URL: https://prismarch-h2020.eu/download/483

Other References

[AECDeltas] URL: https://github.com/aecdeltas

[AECDeltas, Spec] URL: https://aecdeltas.github.io//aec-deltas-spec/#description

[Akselsen 2019] Akselsen, M. V., Stenvold, S. T. “Virtual Reality – Only a Hype or Real Improvement for
Structural Design?” Master’s thesis, Norwegian University of Science and Technology, 2019. URL:
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2623347/no.ntnu:inspera:2507506.pdf

[Alvarez and Font, 2020] A. Alvarez and J. Font, 2020. “Learning the designer’s preferences to drive evolution”.
In Proceedings of the International Conference on the Applications of Evolutionary Computation.

[Alvarez et al. 2020] Alvarez A., Font J., Togelius J., “Towards Designer Modeling through Design Style Clustering”,
2020. ArXiv, abs/2004.01697.

[Amoor 1997] Amoor, R. “A generalised framework for the design and construction of integrated design
systems”, (PhD Thesis) University of Auckland, 1997

[Argelaguet et al. 2013] Argelaguet F., Andujar C., "A Survey of 3D Object Selection Techniques for Virtual
Environments”, 2013, URL:https://hal.archives-ouvertes.fr/hal-00907787/document

[Berlo et al 2012] Berlo, L. A. H. M, Beetz, J. , Bos, P. , Hendriks, H. , Tongerer, R. C. J “Collaborative
engineering with IFC: New insights and technology”, Conference: Proc. 9th European Conference on Product
and Process Modelling

[Bowman 2001] Bowman, D. A. “Basic 3D interaction techniques”. Dept. of Computer Science (0106), Virginia
Tech, 2001, URL:
https://people.cs.vt.edu/~bowman/3dui.org/course_notes/siggraph2001/basic_techniques.pdf

[Bowman 2012] Bowman, D. A., McMahan, R. P., Ragan, E. D. “Questioning naturalism in 3D user interfaces”.
In Communications of the ACM, 55 (9) pp. 78-88, 2012, URL:
 https://dl.acm.org/doi/abs/10.1145/2330667.2330687

[Bowman 2014] Bowman, D. A., “The Encyclopedia of Human-Computer Interaction”, 2nd Ed. Chapter 32,
2014, URL: https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-
interaction-2nd-ed/3d-user-interfaces

https://prismarch-h2020.eu/download/472
https://prismarch-h2020.eu/download/480
https://prismarch-h2020.eu/download/483
https://aecdeltas.github.io/aec-deltas-spec/#description
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2623347/no.ntnu:inspera:2507506.pdf
https://hal.archives-ouvertes.fr/hal-00907787/document
https://people.cs.vt.edu/~bowman/3dui.org/course_notes/siggraph2001/basic_techniques.pdf
https://dl.acm.org/doi/abs/10.1145/2330667.2330687
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/3d-user-interfaces
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/3d-user-interfaces

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 181

[buildingSMART] URL: https://www.buildingsmart.org/

[Cyberpunk 2077] URL: https://www.cyberpunk.net/gb/en/

[De Vries 1991] De Vries H., “The Minimal Approach”, Proceedings of the 1991 CIB W078 Conference, 1991

[Deliot and Heitz, 2018] Deliot, T., Heitz, E., “Procedural Stochastic Textures by Tiling and Blending”, 2018.
[ebook] URL: https://drive.google.com/file/d/1QecekuuyWgw68HU9tg6ENfrCTCVIjm6l/view

[Design Council] Design Council. “What is the framework for innovation? Design Council's evolved Double
Diamond”. Design Council, URL: https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-
design-councils-evolved-double-diamond

[Digital Blue Foam] “Digital Blue Foam - Super building design for better cities”, URL:
https://www.digitalbluefoam.com/

[Ekholm 2005] Ekholm A., “Prerequisites for coordination of standards for classification and interoperability”,
ITCon vol. 100, pg 275-289, 2005

[El-Diraby 2015] El-Diraby T., “From Deep Blue to Watson: The Nature and Role of Semantic Systems in Civil
Informatics”, Chapter in [Issa. et. al 2015]

[Epic Games inc] Twinmotion, Real-time immersive 3D AEC visualization. URL:
https://www.unrealengine.com/en-US/twinmotion

[EulerVR] Virtual reality software for structural engineering. URL: https://www.eulervr.com/

[Froese et. al 2015] Froese, T. M., Zeb, J., “Transaction formalization in the infrastructure management using
an ontological approach”, Chapter in [Issa. et. al 2015]

[Gaier et al. 2018] Gaier A., Asteroth A., and Mouret J. B., “Data-efficient design exploration through surrogate-
assisted illumination”. Evolutionary Computation, 26:381–410, 2018.

[Galanos et al. 2021] Galanos T., Liapis A., Yannakakis G. N., and Koenig R., “Arch-elites: Quality-diversity for
urban design,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2021.

[Gielingh 2008] Gieling, W. “An assessment of the current state of product data technologies”, Computer
Aided Design Vol. 40, p750 - 759, 2008
[GitLab] PrismArch GitLab account. Available at www.gitlab.com/prismarch

[GraphVR] GraphVR, “A Virtual Reality Tool for the Exploration of Graphs with HTC Vive System:
Graph exploring using Virtual Reality and UE4", URL:http://graphics.unibas.it/www/UE4-
Graph3D/index.md.html#abstract

[Grasshopper] Grasshopper - visual programming interface for Rhino, URL: https://www.grasshopper3d.com/

[Gravity Sketch] Gravity Sketch, “Think in 3d, create in 3d”, URL: https://www.gravitysketch.com/

[Hamil 1994] Hamil. S The end of babel - IFC promotional Video, 1994
URL: https://www.youtube.com/watch?v=g_jmGQvr6dQ

[IAI 1999] “An Introduction to the International Alliance for Interoperability and the Industry Foundation
Classes”. Ed. Wix J.

[IFC Architecture Guide 1999] “IFC Object Model Architecture Guide”, published by the International Alliance
for Interoperability, 1999

https://www.buildingsmart.org/
https://www.cyberpunk.net/gb/en/
https://drive.google.com/file/d/1QecekuuyWgw68HU9tg6ENfrCTCVIjm6l/view
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.digitalbluefoam.com/
https://www.unrealengine.com/en-US/twinmotion
https://www.eulervr.com/
http://www.gitlab.com/prismarch
http://graphics.unibas.it/www/UE4-Graph3D/index.md.html#abstract
http://graphics.unibas.it/www/UE4-Graph3D/index.md.html#abstract
https://www.grasshopper3d.com/
https://www.gravitysketch.com/
https://www.youtube.com/watch?v=g_jmGQvr6dQ

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 182

[IFC Implementation Agreement] URL:
https://standards.buildingsmart.org/documents/Implementation/IFC_Implementation_Agreements/

[Issa et. al 2015] Issa. R., Mutis I., “Ontology in the AEC Industry: A Decade of Research and Development in
Architecture, Engineering, and Construction”, American Society of Civil Engineers, June 2015

[Kaley 2021] Kaley A., “Mapping User Stories in Agile”. Nielsen Norman Group, URL:
https://www.nngroup.com/articles/user-story-mapping/

[Kinzler et al, 2021] H.Kinzler, D.Zolotareva, R.Tadauchi and A.Mnich-Spraiter , "Sphereing: A Novel Framework
for Real-time Collaboration and Co-presence in VR", 2021, p,4.

[Laakso et. al 2012] Laakso, M., Kiviniemi, A., “The IFC standard - A review of history, development and
standardization”, ITcon Vol. 17, pg. 134-161, 2012

[Laubheimer 2017] Laubheimer, P. “Personas vs. Jobs-to-Be-Done”. Nielsen Norman Group, URL:
https://www.nngroup.com/articles/personas-jobs-be-done/

[Liapis et al. 2013] A. Liapis, G. N. Yannakakis, and J. Togelius, “Designer modeling for personalized game
content creation tools,” in Proceedings of the AIIDE Workshop on Artificial Intelligence & Game Aesthetics,
2013.

[Liapis et al. 2014] A. Liapis, G. N. Yannakakis, and J. Togelius, “Designer modeling for Sentient Sketchbook,” in
Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG), 2014.

[Liu, 2009] Liu L., Tamer Ozsu, M., Encyclopedia of Database Systems, 2009. Retrieved from:
https://www.springer.com/gp/book/9780387355443

[McCabe 2015] McCabe A., Mcpolin D. O., “Virtual reality: Immersed in the structural world”. The Structural
Engineer. 93, 20-23, 2015, URL: https://www.researchgate.net/profile/Aimee-
Mccabe/publication/285612355_Virtual_reality_Immersed_in_the_structural_world/links/5aa9480a0f7e9b88
266e8ccb/Virtual-reality-Immersed-in-the-structural-world.pdf

[Miller, 2016] Miller N., “The wicked problem of interoperability”, 2016.
Retrieved from: https://www.bdcnetwork.com/blog/wicked-problem-interoperability

[Mouret and Clune, 2015] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping elites,” ArXiv, vol.
abs/1504.04909, 2015.

[Nissila, 2014] Nissali, J., Heikkila, R., “BIM-based schedule control for precast concrete supply chain”. URL:
https://www.researchgate.net/figure/An-example-of-XML-language-in-Status-exchange-Structural-designers-
and-contractors_fig1_282727750

[Nystrom 2014] “Game programming patterns”. Genever Benning. URL :
https://www.gameprogrammingpatterns.com/flyweight.html

[Poinet, 2020] Poinet, P., Stefanescu, D., Papadonikolaki, E., “Collaborative Workflows and Version Control
Through Open-Source and Distributed Common Data Environment”, 2020.
URL: https://www.researchgate.net/figure/The-stream-revision-history-available-via-the-Speckle-admin-
interface_fig2_342419999

[PrismArch Grant Proposal] “PrismArch: Virtual reality aided design blending cross-disciplinary aspects of
architecture in a multi-simulation environment”. Proposal number: 952002.
URL: https://cordis.europa.eu/project/id/952002

https://standards.buildingsmart.org/documents/Implementation/IFC_Implementation_Agreements/
https://www.nngroup.com/articles/user-story-mapping/
https://www.nngroup.com/articles/personas-jobs-be-done/
https://www.springer.com/gp/book/9780387355443
https://www.researchgate.net/profile/Aimee-Mccabe/publication/285612355_Virtual_reality_Immersed_in_the_structural_world/links/5aa9480a0f7e9b88266e8ccb/Virtual-reality-Immersed-in-the-structural-world.pdf
https://www.researchgate.net/profile/Aimee-Mccabe/publication/285612355_Virtual_reality_Immersed_in_the_structural_world/links/5aa9480a0f7e9b88266e8ccb/Virtual-reality-Immersed-in-the-structural-world.pdf
https://www.researchgate.net/profile/Aimee-Mccabe/publication/285612355_Virtual_reality_Immersed_in_the_structural_world/links/5aa9480a0f7e9b88266e8ccb/Virtual-reality-Immersed-in-the-structural-world.pdf
https://www.bdcnetwork.com/blog/wicked-problem-interoperability
https://www.researchgate.net/figure/An-example-of-XML-language-in-Status-exchange-Structural-designers-and-contractors_fig1_282727750
https://www.researchgate.net/figure/An-example-of-XML-language-in-Status-exchange-Structural-designers-and-contractors_fig1_282727750
https://www.gameprogrammingpatterns.com/flyweight.html
https://www.researchgate.net/figure/The-stream-revision-history-available-via-the-Speckle-admin-interface_fig2_342419999
https://www.researchgate.net/figure/The-stream-revision-history-available-via-the-Speckle-admin-interface_fig2_342419999
https://cordis.europa.eu/project/id/952002

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 183

[Rittel and Webber, 1973] Rittel, H. W. J., Webber, M. M. “Dilemmas in a General Theory of Planning” (1973)
https://web.archive.org/web/20070930021510/http://www.uctc.net/mwebber/Rittel+Webber+Dilemmas+Ge
neral_Theory_of_Planning.pdf.
See also https://en.wikipedia.org/wiki/Wicked_problem#cite_note-Rittel_and_Webber_1973-4

[Rumbaugh et al 1991] Rumbaugh, J. , Blaha, M. , “Object Oriented Modeling and Design”, Prentice Hall
(January 1, 1991)

[Sherwin 2018] Sherwin, K. “Card Sorting: Uncover Users' Mental Models for Better Information Architecture”.
Nielsen Norman Group, URL: https://www.nngroup.com/articles/card-sorting-definition/

[Sfikas et al. 2021] K. Sfikas, A. Liapis, and G. N. Yannakakis, “Monte carlo elites: Quality-diversity selection as a
multi-armed bandit problem,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2021.

[SOFiSTiK] SOFiSTiK - FEM, BIM and CAD Software for Structural Engineers, URL: https://www.sofistik.com/

[Speckle] https://speckle.systems/careers/growth-marketing-manager/

[Speckle GitHub] URL: https://github.com/speckleworks

[Speckle Diffing] URL: (https://v1.speckle.systems/docs/developers/aec-delta/)

[Steed 2017] Steed, A. “How virtual reality is changing engineering”. Ingenia. 70, 2017, URL:
https://www.ingenia.org.uk/ingenia/issue-70/how-virtual-reality-is-changing-engineering

[Stefanescu 2020] Stefanescu, D. , “Alternate means of digital design communication” (PhD thesis) UCL,
London, 2020.

[Takagi 2001] H. Takagi, “Interactive evolutionary computation: Fusion of the capabilities of EC optimization
and human evaluation,” Proceedings of the IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.

[Tarandi 1998] Tarandi, V. , “Neutral intelligent CAD communication: information exchange in construction
based upon a minimal schema”, (PhD Thesis) KTH, 1998

[Tibuzzi 2016] Tibuzzi, E. “Interweaving Practise”, in Design Engineering (Kara. H, Bosia. D) 2016.

[Unreal Engine] Unreal Engine Documentation, "Unreal Engine 4 Terminology",
URL:https://docs.unrealengine.com/4.26/en-US/Basics/UnrealEngineTerminology/

[Unreal Lumen] URL: https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Lumen/

[Unreal Lightmass] URL: https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/GPULightmass/

[Unreal TextureVariation] URL: https://forums.unrealengine.com/t/new-texturevariation-node-in-4-26-simple-
non-tiling-materials/152671

[Wei et. al 2010] Wei, G. , Zhou, Z. , Zhao, X. , Ying, Y. “Design of building component library based on IFC and
PLIB standard”, 2nd International Conference on Computer Engineering and Technology, 2010

[Zaker 2018] Zaker, R., Coloma, E. “Virtual reality-integrated workflow in BIM-enabled projects collaboration
and design review: a case study”. Vis. in Eng. 6, 4, 2018, URL:
https://viejournal.springeropen.com/track/pdf/10.1186/s40327-018-0065-6.pdf

[Delany, S. "Uniclass 2015"] URL: https://toolkit.thenbs.com/articles/classification#classificationtables

https://web.archive.org/web/20070930021510/http:/www.uctc.net/mwebber/Rittel+Webber+Dilemmas+General_Theory_of_Planning.pdf
https://web.archive.org/web/20070930021510/http:/www.uctc.net/mwebber/Rittel+Webber+Dilemmas+General_Theory_of_Planning.pdf
https://en.wikipedia.org/wiki/Wicked_problem#cite_note-Rittel_and_Webber_1973-4
https://www.nngroup.com/articles/card-sorting-definition/
https://www.sofistik.com/
https://speckle.systems/careers/growth-marketing-manager/
https://github.com/speckleworks
https://v1.speckle.systems/docs/developers/aec-delta/
https://www.ingenia.org.uk/ingenia/issue-70/how-virtual-reality-is-changing-engineering
https://docs.unrealengine.com/4.26/en-US/Basics/UnrealEngineTerminology/
https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Lumen/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/GPULightmass/
https://forums.unrealengine.com/t/new-texturevariation-node-in-4-26-simple-non-tiling-materials/152671
https://forums.unrealengine.com/t/new-texturevariation-node-in-4-26-simple-non-tiling-materials/152671
https://viejournal.springeropen.com/track/pdf/10.1186/s40327-018-0065-6.pdf
https://toolkit.thenbs.com/articles/classification#classificationtables

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 184

CSI Building Knowledge Improving Project Delivery "OmniClass Construction Classification System", [Online]
URL: http:// www.omniclass.org

https://www.researchgate.net/publication/332352148_Method_for_Evaluating_a_Building_Information_Mod
el

○ 5.2 Extracts from Structural Engineering User Interviews

Available in the PrismArch project repository. Available on request to the PrismArch
consortium.

○ 5.3 Images

Figure Reference

2.1.1a - 2.2.2.2a Images by AKT II.

2.2.2.3a Image by AKT II. Reproduction based on source [IAI 1999].

2.2.2.3b - 2.2.2.3c Image by AKT II.

2.2.2.3d Specification for ifcBeam. Retrieved from:
https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifcsharedbldgelements/lexic
al/ifcbeam.htm

2.2.2.4a From [Laakso et. al 2012]

2.2.2.4b From [Nissila, 2014]

2.2.2.4c Retrieved from: https://github.com/buildingSMART/ifcJSON

2.2.3.1a Screenshot of Speckle interface, taken from www.speckle.xyz.

2.2.3.2a Image by AKT II.

 2.2.3.2b Screenshot of Speckle interface, www.speckle.xyz

 2.2.3.2c Image by AKT II.

 2.2.3.3a Screenshot of Speckle interface, www.speckle.xyz

2.2.3.3b Speckle documentation. Retrieved from: https://speckle.guide/dev/base.html

2.2.3.3.c Speckle documentation. Retrieved from: https://speckle.guide/dev/base.html

2.2.3.3d Speckle documentation.https://speckle.guide/dev/objects.html

2.2.3.3e Speckle documentation https://github.com/specklesystems/speckle-
sharp/blob/main/Objects/Objects/BuiltElements/Beam.cs

2.2.4.2a
2.2.4.2b

Images by AKT II.

2.3.3a Georgios Adamopoulos, University College London (2021). Mapping from 3D Euclidean space to
2D Texture space. Retrieved from https://github.com/UCL/dfpi/wiki/Mesh-Basics

http://www.omniclass.org/
https://www.researchgate.net/publication/332352148_Method_for_Evaluating_a_Building_Information_Model
https://www.researchgate.net/publication/332352148_Method_for_Evaluating_a_Building_Information_Model
https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifcsharedbldgelements/lexical/ifcbeam.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifcsharedbldgelements/lexical/ifcbeam.htm
https://github.com/buildingSMART/ifcJSON
http://www.speckle.xyz/
http://www.speckle.xyz/
http://www.speckle.xyz/
https://speckle.guide/dev/base.html
https://speckle.guide/dev/base.html
https://speckle.guide/dev/objects.html
https://github.com/specklesystems/speckle-sharp/blob/main/Objects/Objects/BuiltElements/Beam.cs
https://github.com/specklesystems/speckle-sharp/blob/main/Objects/Objects/BuiltElements/Beam.cs
https://github.com/UCL/dfpi/wiki/Mesh-Basics

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 185

2.3.3b. UVPackmaster. Comparison between 2 different UV Packing algorithms Retrieved from
https://uvpackmaster.com/uvpackmaster-for-blender/

2.3.3c Ben Golus (2017). Tri-Planar mapping example and concept. Retrieved from:
https://bgolus.medium.com/normal-mapping-for-a-triplanar-shader-10bf39dca05a

2.3.3d. Deliot and Heitz (2018). Procedural stochastic texturing. Hexagonal “stamp” selection (left) and
blending (right). Retrieved from:
https://drive.google.com/file/d/1QecekuuyWgw68HU9tg6ENfrCTCVIjm6l/view

2.3.4.2a Nystrom (2014). Instancing diagrams (Flyweight pattern) -
www.gameprogrammingpatterns.com/flyweight.html

2.3.4.2b Nystrom (2014). Instancing diagrams (Flyweight pattern) -
www.gameprogrammingpatterns.com/flyweight.html

2.4.1a - 2.4.4a Images by AKT II.

2.4.5a - 2.4.5e Images by AKT II.

2.6.1a Speckle web interface. Retrieved from: www.speckle.xyz

2.6.1b - 2.6.1g Images by AKT II.

 3.2a Design Council. What is the framework for innovation? Design Council's evolved Double Diamond.
Retrieved from: www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-
councils-evolved-double-diamond

3.3.1a - 3.3.1d Screenshots from [Gravity Sketch] interface.

Retrieved from: www.gravitysketch.com

3.3.2a - 3.3.2b Screenshots from [Grasshopper] interface. Retrieved from:
www.rhino3d.com/6/new/grasshopper

3.4.1a - b, f, j-l Images by ZHVR.

3.4.1c Examples of the User Interface to configure avatar height, the existing plugin MetaHuman inside

Unreal Engine 4

https://docs.metahuman.unrealengine.com/en-US/UserGuide/Body/index.html

3.4.1d Examples of the User Interface to configure avatar LOD, the existing plugin MetaHuman inside
Unreal Engine 4
https://docs.metahuman.unrealengine.com/en-US/UserGuide/Body/index.html

3.4.1e Example of the existing application to calibrate an avatar inside VR, Holodeck User Guide
https://docs.nvidia.com/holodeck/pdf/Holodeck-User-Guide.pdf

3.5.1a-b Images by ZHVR.

3.5.2a - 3.5.2c Images by AKT II.

3.5.2d Screenshot from [EulerVR] interface. Retrieved from: www.eulervr.com

https://uvpackmaster.com/uvpackmaster-for-blender/
https://uvpackmaster.com/uvpackmaster-for-blender/
https://bgolus.medium.com/normal-mapping-for-a-triplanar-shader-10bf39dca05a
https://drive.google.com/file/d/1QecekuuyWgw68HU9tg6ENfrCTCVIjm6l/view
http://www.gameprogrammingpatterns.com/flyweight.html
http://www.gameprogrammingpatterns.com/flyweight.html
http://www.speckle.xyz/
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
http://www.gravitysketch.com/
http://www.rhino3d.com/6/new/grasshopper
https://docs.metahuman.unrealengine.com/en-US/UserGuide/Body/index.html
https://docs.metahuman.unrealengine.com/en-US/UserGuide/Body/index.html
https://docs.nvidia.com/holodeck/pdf/Holodeck-User-Guide.pdf
http://www.eulervr.com/
http://www.eulervr.com/

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 186

3.5.2e Screenshot from [SolidVR] interface

3.5.2f Image by AKT II.

3.5.2g - 3.5.2j Screenshots from [SOFiSTiK] interface

 Images by AKT II.

3.5.2k Screenshot from [Digital Blue Foam] interface

3.5.2l - 3.5.2q Images by AKT II.

3.5.3a - 3.5.3i

3.6.1a - h Images by ZHVR.

3.6.1i Reference to revisit a meeting record, from the game CyberPunk 2077
https://www.youtube.com/watch?v=m6L-7n5KtpA

3.6.1j Reference to X Ray d vs. Photorealistic display modes, illustrating the difference between revisiting
a meeting and attending a meeting
https://youtu.be/tC47SIQkfMA

3.6.1k Examples of BigData Visualisation Layouts, Sviatoslav Iguana, 2019
https://towardsdatascience.com/large-graph-visualization-tools-and-approaches-2b8758a1cd59

3.6.1 l - p, u - z3 Images by ZHVR.

3.6.1q Traditional occlusion solutions in gaming, Tom Looman
https://www.tomlooman.com/the-many-uses-of-custom-depth-in-unreal-4/

3.6.1r Diagram illustrating a user occlusion condition, F.Argelaguet and C.Andujar, https://hal.archives-
ouvertes.fr/hal-00907787/document

3.6.1s Example of Metadata Node navigation using a turntable feature, GraphVR
http://graphics.unibas.it/www/UE4-Graph3D/index.md.html#abstract

3.6.1t Physics based interaction with nodes, Force Directed VR
https://www.youtube.com/watch?t=33&v=O-AwY0gYLlQ&feature=youtu.be

3.6.2a - h Images by ZHVR.

3.6.3a - 3.6.3n Images by AKT II.

3.6.4a BIM widget in VR. Source: https://youtu.be/mhCxFudzFX4

3.6.4b Example of a clash in Navisworks. Source: https://youtu.be/v6HtMKme3Ck

https://www.youtube.com/watch?v=m6L-7n5KtpA
https://youtu.be/tC47SIQkfMA
https://towardsdatascience.com/large-graph-visualization-tools-and-approaches-2b8758a1cd59
https://www.tomlooman.com/the-many-uses-of-custom-depth-in-unreal-4/
https://hal.archives-ouvertes.fr/hal-00907787/document
https://hal.archives-ouvertes.fr/hal-00907787/document
http://graphics.unibas.it/www/UE4-Graph3D/index.md.html#abstract
https://www.youtube.com/watch?t=33&v=O-AwY0gYLlQ&feature=youtu.be
https://youtu.be/mhCxFudzFX4
https://youtu.be/v6HtMKme3Ck

D1.2 Cross Disciplinary Principles & Interface Definitions PrismArch 952002

Filename: PrismArch_D1.2_v1.0 Page 187

3.6.4c Screenshot of a schedule within Revit. Source:
https://www.cadlinecommunity.co.uk/hc/en-us/articles/115001913009-Revit-Copying-
a-Standard-or-Custom-Schedule-to-other-Projects

3.6.4d Screenshot of a quantification workbook in Navisworks. Source:
https://www.researchgate.net/figure/Quantification-workbook-of-Navisworks-
Validation-by-stakeholders-The-advantages-of-BIM_fig6_326904461

https://www.researchgate.net/figure/Quantification-workbook-of-Navisworks-Validation-by-stakeholders-The-advantages-of-BIM_fig6_326904461
https://www.researchgate.net/figure/Quantification-workbook-of-Navisworks-Validation-by-stakeholders-The-advantages-of-BIM_fig6_326904461

